
JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Cambridge University Mobile System Group, 2020-11-30 14:00 (UTC+0), virtual

Univ.-Prof. Dr. René Mayrhofer (JKU Linz)
(Full disclosure: also affiliated with Android security, but not speaking for Google today)

The Android Platform Security Model
(and the security status of actual devices)

2

Context: Convergence of security-critical services

3

Context: The Android ecosystem
… is massive, diverse, and constantly changing

■ >1.300 brands

■ >24.000 devices

■ >1.000.000 apps

■ >2.000.000.000 users

(https://www.blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/)

https://www.blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/

4

Context: The Android ecosystem

Image credit: Google

5

Context: The Android ecosystem

Image credit: Google

6

The Android Platform Security Model: Security Goals

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, arXiv:1904.05572, April 2019]

1) Protecting user data
□ Usual: device encryption, user authentication, memory/process isolation
□ Upcoming: personalized ML on device

2) Protecting device integrity
□ Usual: malicious modification of devices
□ Interesting question: against whom?

3) Protecting developer data
□ Content
□ IP

https://arxiv.org/abs/1904.05572

7

■ Adversaries can get physical access to Android devices (lost, stolen, borrowed, etc.)
□ Physical proximity
□ Powered off
□ Screen locked
□ Screen unlocked by different user

■ Network communication and sensor data are untrusted
□ Passive eavesdropping
□ Active On-Path Attacker (OPA) / MITM

■ Untrusted code is executed on the device
□ Includes all forms of OS/app API abuse
□ Includes misdirection, deception, etc. through UI

■ Untrusted content is processed by the device

■ New: Insiders can get access to signing keys

The Android Platform Security Model: Threat Model

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, arXiv:1904.05572, April 2019]

https://arxiv.org/abs/1904.05572

8

The Android Platform Security Model: Rules

User

App
developer

Platform

Action

■ Rule 1: Three-party consent

9

The Android Platform Security Model: Rules

■ Rule 2: Open ecosystem access

■ Rule 3: Security is a compatibility requirement

■ Rule 4: Factory reset restores the device to a safe state

■ Rule 5: Applications are security principals

10

Android architecture: layers of isolation (on main CPU)

Personal
app 1

Personal
app 2

Work
app 1

Work
app 2

Work profile

Primary Android user

Personal
app 3

Personal
app 4

Additional Android user

Android Linux kernel

Hypervisor

VM kernel

VM apps

Hardware mode monitor

TEE kernel

TEE
app 2

TEE
app 1

Key-
master

Gate-
keeper

FP match

HAL 2

System
service 2

HAL 1

System
service 1

Question:
Controlling device-wide parameters from work profile?

12

Android architecture: isolation between hardware modules

Personal
app 1

Personal
app 2

Work
app 1

Work
app 2

Work profile

Primary Android user

Peronal
app 3

Personal
app 4

Additional Android user

Android Linux kernel

Hypervisor

VM kernel

VM apps

Hardware mode monitor

TEE kernel

TEE
app 2

TEE
app 1

Key-
master

Gate-
keeper

FP match

HAL 2

System
service 2

HAL 1

System
service 1

Radios:
WiFi, BT, NFC,

cell modem (BP),
GPS, UWB, etc.

GPU, display +
touch screen

controller

Sensors:
mic, camera,
inertial, FP,

heart rate, etc.

AP

ML accelerator

Tamper
resistant
hardware

Power controller

13

■ Applications must be signed for installation
□ May be self-signed by the developer, therefore no requirement for centralized application

Q/A or control
● Note: Play-signed apps hold their private signing keys on the Google Play store

□ Signature supports non-repudiability (if the public key/certificate is known)
□ Signature by same private key allows applications to share data and files
□ Automatic application updates possible when signed by same private key

■ Otherwise, open eco-system
□ Users may install arbitrary applications (directly from APK files or from different markets)
□ Apps can be written in any language
□ DRM and application copy protection available (Android 2.2 and newer market API), but

optional

Android app security principles

14

Upon installation, package manager creates a dynamic user ID for each application
 ⇒ Application sandbox

■ All application files and processes are restricted to this UID

■ Enforced by Linux kernel and therefore same restrictions for all code (Java + native)

■ Starting with Android 4.4 (introduced in 4.3 with permissive mode, 4.4 switches to
enforcing), augmented with SELinux policy for kernel level mandatory access control
(MAC)

■ By default, even the user and debugging shells are restricted to a special UID (SHELL)

■ Permissions granted at installation time allow to call services outside the application
sandbox

“rooting” to gain “root” access (super user / system level access on UNIX without further
restrictions, but may be limited by SELinux MAC)

Android security architecture

15

Android security boundaries
Android sandbox has two main layers of permissions models

■ File system entries and some other kernel resources
□ enforced by DAC (standard filesystem permissions) and in newer versions MAC

(SELinux) ⇒ enforced on kernel level
□ very restrictive compared to standard Linux distributions
□ Android ID (AID) is used as both UID (user ID, for installed applications) and GID (group

ID, for accessing resources)
□ commonly referred to with the term “Android sandbox” (although this is not the full picture)

■ Permissions on API calls
□ enforced by DalvikVM/ART and Android framework/libraries, as well as specific apps
□ allow bridging the security boundary created by the first layer enforced by kernel sandbox

■ Plus other mechanisms for specific purpose (e.g. Linux capabilities and seccomp filters)
For interplay between DAC, MAC, and CAP see e.g. [Hernandez et al.: “BigMAC: Fine-Grained Policy Analysis of Android Firmware”,
USENIX Security 2020], online at https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez

https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez

16

Crossing the app sandbox (process) boundary

■ Apps invoke Android APIs as libraries linked in their own process (with the app AID)

■ Privileged processes (services) run in different process (other, more privileged AID)

■ Crossing the boundary required IPC (Inter Process Communication)

■ On Android, implemented by Binder
□ Patch to Linux kernel, part of the Android Common Kernel
□ Can be called from unprivileged processes
□ Calls registered objects in other processes
□ Transports objects (shared memory) from one process to another
□ Object-oriented call and arguments interface defined by AIDL (Android Interface Definition

Language) Details see ⇒ https://developer.android.com/guide/components/aidl

■ One of the core security components in AOSP bugs in Binder often lead to universal ⇒
Android exploits

https://developer.android.com/guide/components/aidl

17

■ All Android apps (system and user-installed) must be signed
□ typically, firmware updates are also signed by OEM, boot loader may only allow to flash

and/or boot “correctly” signed images
□ recovery mode often applies only updates signed by same OEM
□ newer Android versions verify signatures during boot and run-time (dm-verity)

■ Signing is done with private keys held by developers / organizations, public keys embedded
in individual apps, system image, and/or in boot loader for image signatures

■ Signing key types:
□ individual developer keys (self-signed) for apps
□ platform, shared, media and testkey in AOSP tree

● platform is used for “core” Android components with elevated privileges

□ releasekey for release type image builds, must by kept private
□ more details at https://source.android.com/devices/tech/ota/sign_builds.html and

http://nelenkov.blogspot.co.at/2013/05/code-signing-in-androids-security-model.html

Android code signing

https://source.android.com/devices/tech/ota/sign_builds.html
http://nelenkov.blogspot.co.at/2013/05/code-signing-in-androids-security-model.html

Question:
Make verified boot state available to all apps?`

19

Taming complexity in variants
Compatibility Definition Document
(Standards)

■ Defines requirements a device needs to
fulfill to be considered "Android"

■ Updated for every Android release
□ Many changes scoped to apps targeting

this version

■ Needs to strike balance between standard
base and openness for innovation
□ Some requirements scoped to hardware

capabilities (e.g. form factors)

■ Updating security requirements is one
important means of improving ecosystem

Compatibility/Vendor/Security/... Test Suite
(Enforcement)

■ Tests need to be run by device manufacturer

■ Guaranteed conformance to (testable parts of)
CDD

In Android 10, ca. 800 tests for SELinux policy

■ Usability of Android trademark and Google
apps bound to passing tests

■ Complexity in test execution:
□ Automation of test cases
□ Visibility on "user" firmware builds

20

On-device encryption

■ Android 5.0 introduced Full Disk Encryption (FDE)
□ entangled with user knowledge factor (PIN/password), but can potentially be disabled

(then encryption key only depends on device-unique key kept in TrustZone)
□ full data partition encrypted with same key, including meta data (e.g. file names)
□ all user accounts and profiles encrypted with same key
□ most system functions inaccessible until knowledge factor entered during reboot

■ Android 7.0 introduced File Based Encryption (FBE)
□ different keys per users/profiles
□ difference between “device encrypted” (DE, only bound to unique device key) and

“credential encrypted” (CE, entangled with user knowledge factor)
□ apps that are marked to use DE data storage can function after reboot before first unlock
□ Android 9 added meta data encryption
□ Android 10 made FBE mandatory for all new devices
□ Android 11 introduced Resume-on-Reboot

21

Android 10 made FBE mandatory for all new devices

22

User authentication

■ On most mobile devices, the “lock screen” is the primary method of authentication

■ (Mostly) binary distinction: locked or unlocked
□ some nuance with notifications and other information on lock screen
□ some functions can be used on locked phones (e.g. camera or emergency call)

■ Can integrate with key management (KeyMaster / StrongBox)

■ But implemented by Android user space cannot defend against root adversaries⇒

23

Tiered authentication model

Tertiary authentication
- Needs primary auth
- Least secure
- Most constrained

Secondary Authentication
- Needs primary auth
- Less secure
- Somewhat constrained

Primary Authentication
- Knowledge-factor based
- Most secure

Digital Authentication – Identity and Attributes

Digital Authentication – Identity and Attributes

Digital Authentication – Identity on Smartphones

Scenario 1: Traffic Check

All attributes are transferred

• Name

• Date of birth

• Face picture in full resolution

• (optional) Place of residence

• (optional) Biometric features

• Vehicle classes, potential
restrictions, …

Also needs to work offline!

Scenario 2: Proof of Age

Only relevant attributes

• Face picture

• Age

Scenario 3: Public Transport

Location traces constitute
highly sensitive data

• Place of residence / work

• Religious beliefs

• Illnesses

• Hobbies, particular preferences

Only relevant attributes

• Place of entry / exit or

• Possession of time based ticket

But no unique identifier!
Image credit:

https://pixabay.com/photos/underground-tube-map-stations-2725336/

Scenario 4: Contact Tracing

Location traces constitute
highly sensitive data

• Place of residence / work

• Religious beliefs

• Illnesses

• Hobbies, particular preferences

Only relevant attributes

• Contact with (pseudonym)
person X for Y minutes on day Z

But no unique identifier!

Image credit:
https://pixabay.com/photos/underground-tube-`map-stations-2725336/

Security and Privacy for draft mDL standard
(ISO 18013-5)

● Security properties:
○ Anti-forgery: Identity Credential data is signed by the Issuing Authority
○ Anti-cloning: Secure Hardware produces MAC during provisioning using a key derived

from a private key specific to the credential and an ephemeral public key from the reader.
Public key corresponding to credential private key is signed by the Issuing Authority

○ Anti-eavesdropping: Communications between Reader/Verifier and Secure Hardware are
encrypted and authenticated

● Privacy properties:
○ Data minimization: Reader/Verifier only receives data consented to by the holder.

Backend infrastructure does not receive information about use
○ Unlinkability: Application may provision single-use keys
○ Auditability: Every transaction and its data is logged and available only to the Holder (not

the application performing the transaction)

Question:
Strictly require secure (certified) hardware?

The Android implementation

Identity Credential Application
e.g. “CA Driving License”

Framework APIs

Credential Store Transaction Viewer App
SystemUI

Identity Credential Impl
typically in tamper-resistant HW

Keymaster
Attestation
typically in TEE

Android OS

Image credit: Google

Android 11

34

Android-Device-Security.org

■ Aim: give meaningful data to users and organizations to make an informed decision
concerning the security of a particular device
□ Provide an incentive for investing in improved security

■ Collecting security attributes from devices in labs (and in the future from crowd sourcing)
□ Hardware: e.g. StrongBox support, biometric sensors, etc.
□ System/OS software: e.g. last available security patch level, multi-user support, FDE/FBE,

seamless updates (A/B), etc.
□ Pre-installed apps: platform key signed, pre-granted permissions, risk level, etc.
□ Network traffic: depending on use/context, network level privacy properties (address

randomization), etc.
□ Publicly documented data / OEM commitments: update support period and frequency etc.

35

Android-Device-Security.org:
First lab at JKU Linz

■ 27 different devices so far
□ Focus on European market, 9 different OEMs
□ Low-end, mid range, and flagship devices
□ Unmodified, stock system images

■ Controlled through ADB
□ Reading system properties, list of apps, etc.
□ Installing test apps, collecting results
□ Daily reboot to force applying updates

■ Connected through custom WiFi access point
□ One VLAN per device (selected by 802.1x)
□ Allows tracking all network traffic including

layer 2 addresses (MAC randomization)

36

Android-Device-Security.org:
Rating is hard

Image credit: https://xkcd.com/1098/

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Web: https://jku.at/ins
Email: rm@ins.jku.at
Twitter: @rene_mobile
Wire: @rm

Questions?

