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Context: Convergence of security-critical services
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Context: The Android ecosystem
… is massive, diverse, and constantly changing

■ >1.300 brands

■ >24.000 devices

■ >1.000.000 apps

■ >2.000.000.000 users

(https://www.blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/)

https://www.blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/
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Context: The Android ecosystem

Image credit: Google
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Context: The Android ecosystem

Image credit: Google
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The Android Platform Security Model: Security Goals

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, arXiv:1904.05572, April 2019]

1) Protecting user data
□ Usual: device encryption, user authentication, memory/process isolation
□ Upcoming: personalized ML on device

2) Protecting device integrity
□ Usual: malicious modification of devices
□ Interesting question: against whom?

3) Protecting developer data
□ Content
□ IP

https://arxiv.org/abs/1904.05572
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■ Adversaries can get physical access to Android devices (lost, stolen, borrowed, etc.)
□ Physical proximity
□ Powered off
□ Screen locked
□ Screen unlocked by different user

■ Network communication and sensor data are untrusted
□ Passive eavesdropping
□ Active On-Path Attacker (OPA) / MITM

■ Untrusted code is executed on the device
□ Includes all forms of OS/app API abuse
□ Includes misdirection, deception, etc. through UI

■ Untrusted content is processed by the device

■ New: Insiders can get access to signing keys

The Android Platform Security Model: Threat Model

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, arXiv:1904.05572, April 2019]

https://arxiv.org/abs/1904.05572
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The Android Platform Security Model: Rules

User

App 
developer

Platform

Action

■ Rule 1: Three-party consent
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The Android Platform Security Model: Rules

■ Rule 2: Open ecosystem access

■ Rule 3: Security is a compatibility requirement

■ Rule 4: Factory reset restores the device to a safe state

■ Rule 5: Applications are security principals
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Android architecture: layers of isolation (on main CPU)

Personal 
app 1

Personal 
app 2

Work
app 1

Work
app 2

Work profile

Primary Android user

Personal 
app 3

Personal 
app 4

Additional Android user

Android Linux kernel

Hypervisor

VM kernel

VM apps

Hardware mode monitor

TEE kernel

TEE 
app 2

TEE 
app 1

Key-
master

Gate-
keeper

FP match

HAL 2

System 
service 2

HAL 1

System 
service 1



Question: 
Controlling device-wide parameters from work profile?
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Android architecture: isolation between hardware modules
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■ Applications must be signed for installation
□ May be self-signed by the developer, therefore no requirement for centralized application 

Q/A or control
● Note: Play-signed apps hold their private signing keys on the Google Play store

□ Signature supports non-repudiability (if the public key/certificate is known)
□ Signature by same private key allows applications to share data and files
□ Automatic application updates possible when signed by same private key

■ Otherwise, open eco-system
□ Users may install arbitrary applications (directly from APK files or from different markets)
□ Apps can be written in any language
□ DRM and application copy protection available (Android 2.2 and newer market API), but 

optional

Android app security principles
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Upon installation, package manager creates a dynamic user ID for each application 
 ⇒ Application sandbox

■ All application files and processes are restricted to this UID

■ Enforced by Linux kernel and therefore same restrictions for all code (Java + native)

■ Starting with Android 4.4 (introduced in 4.3 with permissive mode, 4.4 switches to 
enforcing), augmented with SELinux policy for kernel level mandatory access control 
(MAC)

■ By default, even the user and debugging shells are restricted to a special UID (SHELL)

■ Permissions granted at installation time allow to call services outside the application 
sandbox

“rooting” to gain “root” access (super user / system level access on UNIX without further 
restrictions, but may be limited by SELinux MAC)

Android security architecture
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Android security boundaries
Android sandbox has two main layers of permissions models

■ File system entries and some other kernel resources
□ enforced by DAC (standard filesystem permissions) and in newer versions MAC 

(SELinux) ⇒ enforced on kernel level
□ very restrictive compared to standard Linux distributions
□ Android ID (AID) is used as both UID (user ID, for installed applications) and GID (group 

ID, for accessing resources)
□ commonly referred to with the term “Android sandbox” (although this is not the full picture)

■ Permissions on API calls
□ enforced by DalvikVM/ART and Android framework/libraries, as well as specific apps
□ allow bridging the security boundary created by the first layer enforced by kernel sandbox

■ Plus other mechanisms for specific purpose (e.g. Linux capabilities and seccomp filters)
For interplay between DAC, MAC, and CAP see e.g. [Hernandez et al.: “BigMAC: Fine-Grained Policy Analysis of Android Firmware”, 
USENIX Security 2020], online at https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez 

https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez
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Crossing the app sandbox (process) boundary

■ Apps invoke Android APIs as libraries linked in their own process (with the app AID)

■ Privileged processes (services) run in different process (other, more privileged AID)

■ Crossing the boundary required IPC (Inter Process Communication)

■ On Android, implemented by Binder
□ Patch to Linux kernel, part of the Android Common Kernel
□ Can be called from unprivileged processes
□ Calls registered objects in other processes
□ Transports objects (shared memory) from one process to another
□ Object-oriented call and arguments interface defined by AIDL (Android Interface Definition 

Language)  Details see ⇒ https://developer.android.com/guide/components/aidl 

■ One of the core security components in AOSP  bugs in Binder often lead to universal ⇒
Android exploits

https://developer.android.com/guide/components/aidl


17

■ All Android apps (system and user-installed) must be signed
□ typically, firmware updates are also signed by OEM, boot loader may only allow to flash 

and/or boot “correctly” signed images
□ recovery mode often applies only updates signed by same OEM
□ newer Android versions verify signatures during boot and run-time (dm-verity)

■ Signing is done with private keys held by developers / organizations, public keys embedded 
in individual apps, system image, and/or in boot loader for image signatures

■ Signing key types:
□ individual developer keys (self-signed) for apps
□ platform, shared, media and testkey in AOSP tree

● platform is used for “core” Android components with elevated privileges

□ releasekey for release type image builds, must by kept private
□ more details at https://source.android.com/devices/tech/ota/sign_builds.html and  

http://nelenkov.blogspot.co.at/2013/05/code-signing-in-androids-security-model.html 

Android code signing

https://source.android.com/devices/tech/ota/sign_builds.html
http://nelenkov.blogspot.co.at/2013/05/code-signing-in-androids-security-model.html


Question: 
Make verified boot state available to all apps?`
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Taming complexity in variants
Compatibility Definition Document 
(Standards)

■ Defines requirements a device needs to 
fulfill to be considered "Android"

■ Updated for every Android release
□ Many changes scoped to apps targeting 

this version

■ Needs to strike balance between standard 
base and openness for innovation
□ Some requirements scoped to hardware 

capabilities (e.g. form factors)

■ Updating security requirements is one 
important means of improving ecosystem

Compatibility/Vendor/Security/... Test Suite 
(Enforcement)

■ Tests need to be run by device manufacturer

■ Guaranteed conformance to (testable parts of) 
CDD

In Android 10, ca. 800 tests for SELinux policy

■ Usability of Android trademark and Google 
apps bound to passing tests

■ Complexity in test execution:
□ Automation of test cases
□ Visibility on "user" firmware builds
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On-device encryption

■ Android 5.0 introduced Full Disk Encryption (FDE)
□ entangled with user knowledge factor (PIN/password), but can potentially be disabled 

(then encryption key only depends on device-unique key kept in TrustZone)
□ full data partition encrypted with same key, including meta data (e.g. file names)
□ all user accounts and profiles encrypted with same key
□ most system functions inaccessible until knowledge factor entered during reboot

■ Android 7.0 introduced File Based Encryption (FBE)
□ different keys per users/profiles
□ difference between “device encrypted” (DE, only bound to unique device key) and 

“credential encrypted” (CE, entangled with user knowledge factor)
□ apps that are marked to use DE data storage can function after reboot before first unlock
□ Android 9 added meta data encryption
□ Android 10 made FBE mandatory for all new devices
□ Android 11 introduced Resume-on-Reboot
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Android 10 made FBE mandatory for all new devices
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User authentication

■ On most mobile devices, the “lock screen” is the primary method of authentication

■ (Mostly) binary distinction: locked or unlocked
□ some nuance with notifications and other information on lock screen
□ some functions can be used on locked phones (e.g. camera or emergency call)

■ Can integrate with key management (KeyMaster / StrongBox)

■ But implemented by Android user space  cannot defend against root adversaries⇒
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Tiered authentication model

Tertiary authentication
- Needs primary auth
- Least secure
- Most constrained

Secondary Authentication
- Needs primary auth
- Less secure 
- Somewhat constrained  

Primary Authentication
- Knowledge-factor based
- Most secure



Digital Authentication – Identity and Attributes



Digital Authentication – Identity and Attributes



Digital Authentication – Identity on Smartphones



Scenario 1: Traffic Check

All attributes are transferred

• Name

• Date of birth

• Face picture in full resolution

• (optional) Place of residence

• (optional) Biometric features

• Vehicle classes, potential 
restrictions, …

Also needs to work offline!



Scenario 2: Proof of Age

Only relevant attributes

• Face picture

• Age



Scenario 3: Public Transport

Location traces constitute 
highly sensitive data

• Place of residence / work

• Religious beliefs

• Illnesses

• Hobbies, particular preferences

Only relevant attributes

• Place of entry / exit or

• Possession of time based ticket

But no unique identifier!
Image credit: 

https://pixabay.com/photos/underground-tube-map-stations-2725336/



Scenario 4: Contact Tracing

Location traces constitute 
highly sensitive data

• Place of residence / work

• Religious beliefs

• Illnesses

• Hobbies, particular preferences

Only relevant attributes

• Contact with (pseudonym) 
person X for Y minutes on day Z

But no unique identifier!

Image credit: 
https://pixabay.com/photos/underground-tube-`map-stations-2725336/



Security and Privacy for draft mDL standard 
(ISO 18013-5)

● Security properties:
○ Anti-forgery: Identity Credential data is signed by the Issuing Authority
○ Anti-cloning: Secure Hardware produces MAC during provisioning using a key derived 

from a private key specific to the credential and an ephemeral public key from the reader. 
Public key corresponding to credential private key is signed by the Issuing Authority

○ Anti-eavesdropping: Communications between Reader/Verifier and Secure Hardware are 
encrypted and authenticated

● Privacy properties:
○ Data minimization: Reader/Verifier only receives data consented to by the holder. 

Backend infrastructure does not receive information about use
○ Unlinkability: Application may provision single-use keys
○ Auditability: Every transaction and its data is logged and available only to the Holder (not 

the application performing the transaction)



Question: 
Strictly require secure (certified) hardware?



The Android implementation

Identity Credential Application 
e.g. “CA Driving License”

Framework APIs

Credential Store Transaction Viewer App 
SystemUI

Identity Credential Impl
typically in tamper-resistant HW

Keymaster 
Attestation
typically in TEE

Android OS

Image credit: Google

Android 11
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Android-Device-Security.org

■ Aim: give meaningful data to users and organizations to make an informed decision 
concerning the security of a particular device
□ Provide an incentive for investing in improved security

■ Collecting security attributes from devices in labs (and in the future from crowd sourcing)
□ Hardware: e.g. StrongBox support, biometric sensors, etc.
□ System/OS software: e.g. last available security patch level, multi-user support, FDE/FBE, 

seamless updates (A/B), etc.
□ Pre-installed apps: platform key signed, pre-granted permissions, risk level, etc.
□ Network traffic: depending on use/context, network level privacy properties (address 

randomization), etc.
□ Publicly documented data / OEM commitments: update support period and frequency etc.
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Android-Device-Security.org: 
First lab at JKU Linz

■ 27 different devices so far
□ Focus on European market, 9 different OEMs
□ Low-end, mid range, and flagship devices
□ Unmodified, stock system images

■ Controlled through ADB
□ Reading system properties, list of apps, etc.
□ Installing test apps, collecting results
□ Daily reboot to force applying updates

■ Connected through custom WiFi access point
□ One VLAN per device (selected by 802.1x)
□ Allows tracking all network traffic including 

layer 2 addresses (MAC randomization)
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Android-Device-Security.org: 
Rating is hard

Image credit: https://xkcd.com/1098/
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