
SECURITY AND COMMUNICATION NETWORKS

Security Comm. Networks 2014; 00:1–15

DOI: 10.1002/sec

RESEARCH ARTICLE

An Architecture for Secure Mobile Devices
René Mayrhofer ∗

Josef Ressel Center for User-friendly Secure Mobile Services, University of Applied Sciences Upper Austria, Softwarepark 11, 4232

Hagenberg, Austria, rene.mayrhofer@fh-hagenberg.at

ABSTRACT

Mobile devices such as smart phones have become one of the preferred means of accessing digital services, both for

consuming and creating content. Unfortunately, securing such mobile devices is inherently difficult for a number of

reasons. In this article, we review recent research results, systematically analyze the technical issues of securing mobile

device platforms against different threats, and discuss a resulting and currently unsolved problem: how to create an end-

to-end secure channel between the digital service (e.g. a secure wallet application on an embedded smart card or an

infrastructure service connected over wireless media) and the user. Although the problem has been known for years

and technical approaches start appearing in products, the user interaction aspects have remained unsolved. We discuss

the reasons for this difficulty and suggest potential approaches to create human-verifiable secure communication with

components or services within partially untrusted devices. Copyright c© 2014 John Wiley & Sons, Ltd.

KEYWORDS

mobile device security; user authentication; secure channel; virtualization; embedded smart card

Received . . .

1. INTRODUCTION

∗

Mobile devices in their various physical incarnations

such as smart phones, wrist watches, glasses, or other

forms of wearable computing are replacing traditional

clients for accessing information services. They already

store highly sensitive and private data and are involved in

processing monetary transactions; in the near future, they

will most likely also process medical data and represent

the user in even more situations by acting as their digital

proxy, e.g. for digital identification.

With the transition from stationary to small mobile

devices, users gain mobility, sensing capabilities, context

∗This is the preprint version of the following article: René Mayrhofer:
“An architecture for secure mobile devices”, Security and Communication
Networks, Wiley, 2014, which has been published in final form at http://
onlinelibrary.wiley.com/doi/10.1002/sec.1028/abstract.

awareness, and integration, but lose extensibility based

on well-known hardware interfaces. In the past, these

interfaces (e.g. USB, PCMCIA, SD, or PCI) have been

used on desktops and laptops to connect trusted hardware

components (e.g. smart card readers with integrated

keypad, USB mass storage devices with fingerprint

readers, etc.).

From a security point of view, these integrated security

devices can provide trusted services such as key storage or

cryptographic computations even under the assumption of

a (partially) untrusted platform as the rest of the computing

system. In fact, class-2 smart card readers with integrated

pinpads are a required hardware component in many

national laws on so-called ’advanced’ electronic signatures

with ’qualified’ certificates [1] to prevent the well-known

problem of malware logging – and invisibly using – the

PIN codes that are required to unlock private keys stored

Copyright c© 2014 John Wiley & Sons, Ltd. 1

Prepared using secauth.cls [Version: 2010/06/28 v2.00]



An Architecture for Secure Mobile Devices R. Mayrhofer

on users’ smart cards. For mobile devices, no comparable

standard solution has been adopted so far.

On the one hand, current mobile devices do not easily

offer the required interfaces to connect such trusted

hardware components, nor do we expect users to desire

carrying a second device to use only for security relevant

input or output. On the other hand, the software stack of

mobile devices like smart phones or watches cannot be

fully trusted and will not be able to reach sufficiently high

levels of certification (such as CC EAL 4+) because of

the inherent complexity of the combined set of kernel,

libraries, system binaries, runtime execution environments,

and installed applications that almost necessarily leads to

security relevant bugs (e.g. [2, 3]). We therefore face the

problem of providing comparable – or for some future

scenarios even better – security on hardware/software

platforms that cannot be fully trusted.

Traditionally, cryptographic protocols have been

applied to secure communication over untrusted channels,

e.g. by using TLS/SSL to connect to a web server over

wireless channels. The problem in this case is that end

users cannot directly execute cryptographic protocols

without any help: they cannot directly verify digital

signatures or perform a decryption operation for a modern

cipher. This leads to the central open issue in mobile

device security: how can users trust their communication

with an embedded secure hardware component (e.g. a

smart card embedded within their smart phone) when

they cannot realistically trust the normal user interface of

their device (which is built upon many layers of complex

software components)?

In this article, we first analyze the main security

threats for mobile devices (section 2) and discuss

potential technical solutions to some of these threats

(section 3) based on a literature survey of recent mobile

security research. We then systematically analyze the

corresponding usability issues and their impact on the

outlined technical approaches (section 4) as a basis for

describing the identified main open issue of creating an

end-to-end secure channel between informational services

and the end user (section 5). Finally, we propose an

architecture for secure mobile devices that addresses

most of the security threats while taking into account

the limitations posed by usability issues (section 6).

Related work is discussed throughout the article instead of

condensed into one separate section. A preliminary version

of this article without the in-depth literature survey and our

proposed solution has previously appeared as a conference

paper [4].

Our main contributions are to:

1. systematically analyze the solved and open security

issues of mobile devices based on current state-of-

the-art (Table I);

2. outline an approach to solve the main issue of end-

to-end security with the user (section 5); and

3. propose an architecture that combines all the nec-

essary approaches to create secure mobile “smart”

devices under current conditions (section 6).

2. SECURITY THREATS FOR MOBILE
DEVICES

Before discussing specific technical approaches, we

analyze the security threats that current mobile devices

and their users face. We illustrate the threats with the

following use cases in mind: physical access control (smart

phone as wireless key), mobile payment (smart phone as

credit/debit card or with locally stored digital coins such

as Bitcoin [5]), the smart phone as identity document

(virtual passport, driving license, etc.), and the smart phone

as access terminal for remote data (e.g. company email,

ERP, etc.). Note that in contrast to Egners et al. [6] who

distinguish between owner threats, platform threats, threats

to other users, and mobile network operator threats, we

focus on threats to the end user and their data (owner

threats) as the most challenging class. In contrast to

La Polla et al. [7], we do not assume mobile phones to

be different from desktop/laptop type systems in terms of

CPU and/or memory capability, but focus on usability and

the context of use as the main distinguishing factors.

All of the above use cases assume the basic security

requirements, namely that user data should remain

confidential (C), that user data integrity (I) should

be protected, and that this data and services need to

remain accessible (A) to authorized users. We can easily

derive that the corresponding threats are leaking private

data, modifying user data, or rendering the device or

its communication inaccessible. These abstract threats

2 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

translate to more detailed threats on different aspects of

the mobile device and its use:

Physical access: Mobile devices are small by definition,

and can therefore easily be lost or stolen [8] and

subsequently fall under control of others. Devices under

the physical control of illegitimate third parties should still

protect the private data (e.g. digital coins or the identity

documents) of their legitimate owners. This is also referred

to as a “malicious user” threat and is currently mostly

addressed for loss or theft by on-device encryption (cf.

next section) but largely open for borrowing of mobile

devices [9]. A sub-class is the illegitimate use of devices by

their owners to e.g. circumvent copy protection schemes

(which falls under platform threats in the classification

in [6])

Communication: As in most related work, we assume

a Dolev-Yao attacker [10] on all wireless channels:

an adversary can eavesdrop, delay, drop, replay, spoof,

and modify messages and masquerade as any sender.

Additionally, relay attacks e.g. on the embedded smart card

may not directly attack the cryptographic protocol, but still

be able to exploit communication [11].

Platform: Due to standard security issues in operating

systems, libraries, or applications, the platform itself can

be attacked with the aim of violating any of the security

assumptions, e.g. to read private user data, modify data,

or perform a denial-of-service attack. We can further

distinguish between:

• External attacks exploiting any of the multitude of

wireless interfaces (e.g. WLAN, Bluetooth, NFC,

or cellular network such as UMTS) or on protocols

of upper layers (e.g. HTTP, HTML parsers, etc.)

may be able to directly access private data or lead

to remote code execution.

• Internal attacks may be performed by installing

malicious apps to either read sensitive data based

on standard application permissions (granted by

inattentive users or not properly enforced by

the platform) or might exploit further privilege

escalation issues [3] to gain full access to the

platform with arbitrary permissions.

User interaction: The most difficult class of threats

concerns user interaction: installed applications (malware)

may try to fake the look and feel of other apps or

platform components, display erroneous or fake data,

capture user input with key/touch logging, and mislead

or confuse the user into making wrong decisions. These

threats are difficult to address because they not only

involve technical, but also psychological and potentially

social aspects, e.g. by exploiting peer pressure or pretended

authority in social engineering attacks. We discuss the

major differences to laptop/desktop systems in more detail

below (see section 4).

3. TECHNICAL APPROACHES

From a technical point of view, addressing the threats to

end-user data and services requires securing all involved

layers of current mobile device platforms:

3.1. Hardware layer

Hardware executes all firm- and software, and therefore a

minimal set of trusted hardware is required as the root of

the trust chain. Although trusted platform modules (TPMs,

cf. [12] for an implementation on top of the Linux kernel)

have been offering secure key storage and code execution,

monitoring of the boot process, and extended protocols for

remote attestation (allowing a device to provide proof to a

remote service that it is only executing certified software)

for laptops, security issues were found [13] and they

have not been widely integrated into off-the-shelf mobile

phones or similar devices so far. Instead, secure elements

(SEs) are starting to appear as part of the NFC hardware

stack in the form of embedded smart cards implementing

the JavaCard standard. Recent results show that the

JavaCard standard could be used as the basis for an open

ecosystem in which third-party applications can bundle

companion code (so-called “applets”) to be executed

securely on the smart card [14]. Unfortunately, some of

the currently used cryptographic protocols to communicate

with applets on the smart card are still open to relay

attacks [11], but these issues can be fixed on the protocol

level and do not invalidate the approach of embedded

secure elements as such. We already proposed a variation

of the SRPv6 protocol that can be executed on JavaCards

for efficient and provably secure communication [15] and

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 3
DOI: 10.1002/sec

Prepared using secauth.cls



An Architecture for Secure Mobile Devices R. Mayrhofer

showed that JavaCard applets can be simulated on standard

Java virtual machines for better debugging support during

development [16]. With these developments, we suggest

that third-party apps could significantly improve their

security by bundling applets alongside the code executed

on the main CPU.

SEs can be utilized for secure key storage and

cryptographic operations, but cannot (at the time of this

writing) support monitoring the boot process to provide

a trust anchor for code executed on the main application

processor (AP). Therefore, implementing secure boot of

the main mobile operating system (the interface to the

next layer) still requires additional hardware support

to verify the boot loader code. In combination with

hardware compartmentalization features such as the ARM

TrustZone, SEs can be used as a basis for secure mobile

devices. Note that we do not assume the mass storage (e.g.

NAND flash) to be secure on the hardware layer, but that

– with physical access to the device – all mass storage can

be read or modified.

3.2. Platform/OS layer

Platform support includes both kernel (executing without

hardware restrictions on the AP) and user space (restricted

by the AP) components, which should be written with

secure coding practices to prevent typical classes of code-

level security vulnerabilities (such as buffer overflows,

missing input validation, etc.). Additionally, the platform

should isolate applications against each other using

sandboxing and verify executed code based on code

signing. However, realistically we always have to assume

security relevant bugs in the code due to the inherent

complexity of current mobile operating systems (cf. [2,3]).

We therefore suggest that two specific security measures

should be added on the platform layer:

• On-device storage memory encryption (as imple-

mented e.g. by Android and iOS) is an effec-

tive safeguard against malicious user threats. Even

under direct physical control, sensitive user data

cannot be decrypted by attackers as long as a

sufficiently long cryptographic key has been used

and that key is not leaked by the platform. The

interesting challenge is how to store the key; either

end users need to enter the key (or a password

from which the key can be derived) at bootup

with the obvious trade-off between usability and

security, or it needs to be stored within a secure

hardware component such as an embedded smart

card and unlocked with secure user authentication

(see below).

• To improve the security of current sandboxing

approaches, virtualization can be used to address

attacks against the platform by keeping the required

trusted code base as small as possible (see e.g.

[17] for a brief introduction based on the older

Symbian OS architecture). Only the virtualization

layer – often called hypervisor or virtual machine

manager – needs to become part of the trusted

base, as the main operating system (e.g. Android)

cannot realistically be assumed to be secure. ARM

TrustZone supports splitting code running on the

AP into trusted (“secure world”) and untrusted

(“normal world”) parts, and starting with the

Cortex-A15 generation, supports full hardware

virtualization to assist existing hypervisors (e.g.

Xen or KVM). With these hardware extensions,

fully functional hypervisors can be implemented

in around 6000 lines of code [18], making them

potentially verifiable using formal methods.

An important question concerning sandboxing

and virtualization that has not yet been fully

addressed is that of granularity. We suggest

that application sandboxing (also extended with

mandatory access control (MAC) schemes such as

SELinux [19]), multiple users, zones (cf. “faces”

in [20]), and virtualization of full OS instances

are complementary and will be used in parallel for

solving different use cases (such as phone sharing

vs. solving the bring-your-own-device problem).

The main issue at the time of this writing is how

to visualize the currently active guest system to the

end user and to enable intuitive yet secure switching

mechanisms [21].

We note that both on-device encryption and sandboxing

are complementary to standard malware scanning tech-

niques based on (fuzzy) pattern matching and code exe-

cution heuristics. Although sandboxing makes it harder

for malware to attack the platform or other applications,

exploitation of security-relevant errors in platform code

and abuse of APIs by malicious apps will remain an issue.

Regular and on-demand scanning of application code is

4 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

therefore beneficial for disabling known-bad application

behavior. However, such malware scanning suffers from

the typical problem of signature database updates, which

is further complicated by the limited battery run-time on

mobile devices [22].

3.3. Application layer

Apps should ideally also be implemented with secure

coding guidelines to avoid data leaks on the application

level. However, with the assumptions of third-party app

markets and low entrance barriers for app developers, we

have to assume apps to be insecure and therefore require

the platform to protect itself from malicious apps (see

above) and focus on securing communication between

apps, infrastructure services, and users (see below). For

an extensive survey on previously suggested approaches

for proactively or reactively detecting security breaches by

malicious or faulty applications, we refer to [7].

3.4. Communication channels

Communication can be secured effectively with well-

known cryptographic protocols such as TLS or IPsec to

prevent eavesdropping or manipulation of user data by any

parties in-transit. This includes attackers on the (wireless)

transfer channels as well as malicious apps executed on

the phone. With regards to confidentiality and integrity

of communication, the problem is mostly solved (as long

as the cryptographic primitives remain unbroken and keys

are not leaked). The remaining challenge is authenticating

those devices or services that are communicating with each

other, which requires the user in the loop (see e.g. [23–35])

to verify bootstrapping of cryptographic protocols and

to prevent man-in-the-middle attacks under the assumed

Dolev-Yao attacker.

3.5. User interaction layer

User interaction involves two aspects:

• User authentication is required to ensure that the

correct user (typically the owner) is interacting

with the device and as additional part to safeguard

against malicious user attacks. In addition to stan-

dard password/PIN entry, (static and/or dynamic)

biometric features may offer a better trade-off

between usability and security, but can be difficult

Application
processor

Secure
element

Boot loader
verification

Boot loader + 
Hypervisor

Standard OS

Apps

Secure UI
Javacard
applets

Flash

Encryption

Mobile
OS

Backend services
Software

Hardware

Cloud service

Open Issue

Figure 1. Overview of technical components: trust chain
indicated with arrows, currently missing parts in red, end-to-end

secure channel marked with dotted line

to secure against recorded input data [36–40]. To

further alleviate that trade-off, Riva et al. propose

a more dynamic determination of authentication

events [41] that seems a good step forwards.

• After successful authentication, the user interface

itself has to be made secure so that users can

reasonably assume that the data they view and enter

is not leaked or modified by other application code

running in parallel on the same device.

3.6. Summary of technical approaches for
mobile device security

Figure 1 summarizes the existing and currently missing

technical parts required to create a secure personal mobile

device. The mobile operating system (OS) (e.g. Android)

is fully available, but cannot realistically be assumed as

sufficiently secure due to the inherent code complexity. A

separate minimized operating system to drive the secure

user interface (UI) can be compartmentalized from the

main OS by relying on virtualization approaches based

on hardware and software support (hypervisor). These

two components are not yet openly available — although

Mobicore aims to provide such a secure user interface

based on ARM TrustZone as a hardware hypervisor,

no details are openly available and, unsurprisingly, first

security issues have already been discovered†. These

technical components solve a few security threats (cf.

†SensePost blog: “A software level analysis of TrustZone OS and Trustlets in
Samsung Galaxy Phone”, 2013-06-06, last retrieved 2013-12-30 from http:
//sensepost.com/blog/9114.html.

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 5
DOI: 10.1002/sec

Prepared using secauth.cls



An Architecture for Secure Mobile Devices R. Mayrhofer

Table I). However, serious usability issues remain when

trying to apply these approaches the same way they have

been used on desktop type systems.

4. USABILITY ISSUES

Although the most prevalent classes of mobile devices

currently used for accessing information services (smart

phones and tablets) no longer need to be assumed to have

limited resources in terms of CPU or memory capabilities

(in contrast to the assumptions e.g. in [7, 42]), there are

significant differences from a usability point of view that

severely impact their security design:

Close personal relationship: Mobile devices are

assumed to be personal devices, even more so than

laptops. Especially smart phones are hardly shared with

others, as they often act as a personal assistant in terms

of routines of (professional and personal) daily life.

This assumption creates an interesting ambivalence in

terms of usable security: On the one hand, these mobile

devices are often used to keep highly personal and

private information, such as messages, pictures, videos,

calendar entries, contacts, or location and itinerary data.

On the other hand, the same assumption of being a

highly personal device often leads to a puzzling neglect

of security best practices, such as using long passwords

for authenticating to the device or the use of on-device

encryption. Many anecdotal and semi-formal user studies

show that only a minority of smart phone users enables

any form of regular authentication at all (and often only if

forced by security policies set by administrators of some

organization). Lacking hard psychological evidence, we

can only assume three underlying causes for this obvious

conflict:

• The assumption of a smart phone being a highly

personal device carries the implication that the

device is under the sole control of the respective

user, because it is carried close to the body.

Although this may be true most of the time, recent

statistical data on mobile phone theft shows that it

is a dangerous assumption from a security point of

view.

• Following security best practices is bothersome

(slow and error-prone) with the limited user

input/output capabilities of current mobile devices.

• Users are unable or unwilling to devote explicit

effort to security issues.

The latter two issues can be attributed to further

differences to the laptop/desktop class of devices as

discussed next.

Additionally, users may feel social pressure e.g. when

lending their mobile device to a family member, friend,

or colleague and may not explicitly lock sensitive

functionality on the device before handing it over [9]. The

result of all these effects is that – although authentication

and locking mechanisms have been implemented in nearly

all mobile device during the past few years – end users

will often not apply them. This strongly suggests that

the methods carried over from desktop and client/server

scenarios have not yet been properly adapted to the

mobile domain and its peculiarities concerning usability.

Biometric user authentication is only one part of a potential

solution, as it does not solve the issues of seemingly wasted

effort and social pressure.

Limited user interface: The user interface is –

after battery runtime – the biggest remaining technical

limitation of current mobile devices: touch screens with

on-screen keyboards and/or small thumb keyboards are not

sufficiently efficient for regularly entering long passwords.

Even security conscious users will find it hard to justify

the time overhead of entering passwords on these limited

input methods. Security measures therefore have to cope

with user input limited in length and duration.

Multitude of contexts of use: Mobile devices are by

definition used in different locations and in different

contexts. Therefore, users will rarely be able to commit

their undivided attention to the use of their device, but will

have to remain aware of their surroundings and focused

on the real-life interactions (e.g. crossing a busy road

while trying to authenticate to their smart phone to read

the SMS that has just been received). For this reason,

security measures need to be as unobtrusive as possible,

or users will – if given the choice – simply deactivate

them. Additionally, security relevant interaction will also

take place in a mobile context, and eavesdropping-type

attacks (referred to as shoulder surfing in the context of

6 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

authentication methods) can therefore not be ruled out by

assuming a secure location (such as the user’s office or

home). All security measures have to take the multitude

of potential contexts of use into account.

Plug-and-play expectation without training opportuni-
ties: The proliferation of mobile devices gives a wider

range of the world population access to informational

services. Market analysis data suggests that we already

have more smart phones accessing Internet services than

all laptop/desktop type systems together. This implies

that more end users with no training or previous expo-

sure to computer systems use their mobile devices for

security critical transactions. In the traditional domain of

laptop/desktop systems, many users received some form

of training on their first contact with computer systems,

and these introductions often included a part on secu-

rity best practices. With wide availability of cheap smart

phones outside the traditional area of computer systems,

the number of untrained end users grows significantly, and

all security measures therefore have to become intuitive.

The implication of these differences from a security

point of view might be summarized as “users don’t care

about security”. We argue that this is not the case, but

that products have not yet been able to provide a sufficient

compromise between usability and security that takes into

account all these differences from a usability point of view.

Especially the two issues of untrained users being unaware

of the implications of security measures and of limited

attention to security measures are the main cause for the

difficulty of establishing secure communication with end

users.

Table I summarizes how the threats summarized in

section 2 can be addressed by technical approaches as

outlined in section 3, but highlights which usability

issues have to be taken into account when applying

the technical approaches: Authentication (both user and

device authentication) require effort and therefore time

and attention from end-users, which is aggravated by the

limited user interfaces. Platform protection approaches

such as MAC schemes, virtualization, and secure boot need

to remain largely invisible to end users.

5. UNSOLVED PROBLEM: END-TO-END
SECURE CHANNEL TO THE USER

With the technical approaches outlined above (section 3),

we can create a a chain of trust to secure a device platform

starting from its power-off state: under direct control of the

legitimate owner and starting with secure hardware as trust

anchor, a chain of signed code (boot loader, hypervisor,

kernel, platform, apps) could prevent the installation and

execution of malware. In combination with encrypted mass

storage and secure key storage in an embedded smart card,

a mobile device can implement a complete secure boot

process and therefore provide a protected environment as

long as all signed code is reasonably secure (apps do not

have to be assumed universally secure).

Current approaches developed for the mass-market (e.g.

ARM TrustZone and the Mobicore secure OS) provide a

comparable technical solution and extend it with the secure

user interface part executed alongside the main operating

system so that the standard user interface elements (e.g.

the Android UI elements) no longer have to be trusted

(cf. fig 1). However, two problems remain, as we have

to assume malware running alongside trusted code in the

form of untrusted third-party apps executed on a partially

trusted (not malicious, but potentially exploitable) OS, and

we have to assume users to be not as diligent as we would

like them to be from a security point of view (section 4).

As summarized in Table I, the main issue of lacking user

attention requires that virtualization techniques need to be

coupled with a secure indicator.

5.1. Securing output

Even with a secure UI (such as Mobicore) assisted by

hardware virtualization (such as ARM TrustZone) and an

embedded smart card (such as an NFC secure element),

nothing prevents a malicious app from trying to fake the

user interface that is normally presented by the secure

UI and therefore manipulating output from a presumably

secure app/service to the user. The reason is that both

the trusted and untrusted software components rely on the

same input/output modalities – the single touch screen in

the case of current smart phones. Although some solutions

have been developed towards a secure GUI on desktop-

type systems (see e.g. the X11 windows extensions by

Feske and Helmuth [43]), mobile devices require different

approaches to visualization: window managers and the

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 7
DOI: 10.1002/sec

Prepared using secauth.cls



An Architecture for Secure Mobile Devices R. Mayrhofer

Table I. Summary: Security threats for mobile devices, technical approaches to address them, and usability issues to take into account

Layer Threat Technical approaches User interaction limitations

physical
loss/theft encryption + biometric authentication delay + effort
borrowing biometric authentication + virtualization delay + effort + social pressure
circumvent copy protection secure key storage on smart card offline capability

communication subverted communication sensor-based device authentication delay + effort

platform
abuse APIs MAC + malware scanning transparency
exploit platform code MAC + virtualization + secure boot should be invisible
attack other apps MAC + virtualization + smart card should be invisible

user interaction
masquerade as other app virtualization + secure indicator user attention
capture user input virtualization + secure indicator user attention

resulting window decorations are rarely available, and

running applications often use full screen modes. Under

the assumption of applications with access to all parts of

the screen, we therefore have to deal with malware trying

to copy the look and feel of other parts of the (secure)

system.

We explicitly repeat that securing output to the

user is significantly harder than communicating with a

backend service or another device, because users cannot

realistically verify digital signatures or perform decryption

operations without the help of computing devices.

Therefore, we cannot rely on the standard approach of

using a cryptographic protocol to secure communication

through untrusted components. Furthermore – considering

the usability issues discussed above – end users would not

devote the required effort and attention to verifying their

end of a cryptographically secured communication even if

they were capable of doing so.

The most sensible solution to provide users with the

required visual cue in an intuitive, unobtrusive, low-effort,

yet unambiguous manner seems to be additional hardware.

Various options seem suitable, from a simple RGB LED

that indicates which virtual guest is currently controlling

the UI to a secondary display under exclusive control of

the (limited) trusted components. We call this additional

hardware output component the secure indicator, in line

with the independently proposed “secure-mode indicator”

from recent related work [44]. However, the really

interesting question is not the technical implementation,

but standardization on the user interaction: will everybody

agree on one standard that users can become used to and

that they will actually check (unobtrusive, but noticeable

for every secure interaction, intuitive, understandable, and

documented for first-time users)?

5.2. Securing input

We face an equivalent problem for input from the user

to a presumably secure app/service: all input is currently

handled by the main OS because of its exclusive hold on

the single touch screen. Secure input needs a way for the

user to a) be sure that input only goes to secure components

(e.g. trusted virtual guest domains) and b) to initiate a

switch between different components (virtual guests) that

is not subject to an app-in-the-middle attack.

While this can also be achieved with additional

hardware such as dedicated pinpads hard-wired to the

SE, practical experience strongly suggests that users will

not want their mobile devices to become bigger “just for

security purposes”. A more practical approach is therefore

to first secure output and then rely on the intuitive end-user

assumption that those components that produce the current

output will also receive the input. This solves the problem

concerning the user interaction aspect by giving (secure)

feedback to users which component (virtual guest) they are

interacting with. However, the technical implementation

still remains open for current smart phone platforms,

because the touch screen driver will typically reside in

the main OS and not in the limited hypervisor code. Our

current approach is to move touch screen event handling

into the hypervisor code and forward those input events

only to the virtual guest that is currently controlling screen

output.

The same approach has been taken in very recent

work by Gilad, Herzberg, and Trachtenberg [44] by

implementing a µTCB as a small component running

in ARM TrustZone secure world mode alongside the

standard operating system executed in normal world mode.

This µTCB controls the touch screen input interrupts

and therefore receives all input as long as it is active.

8 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

We consider it one possible implementation of our

more abstract hypervisor component in the architecture

described next. Notably, the µTCB also assumes additional

input hardware in the form of a single “Secure Attention

Key” to trigger a switch to the secure world code.

Additional hardware is one option considered in our

previous comparison of switching mechanisms from a user

point of view [21]. However, preliminary results suggest

that users find switching via the standard lock screen more

intuitive than using a dedicated hardware switch.

6. AN ARCHITECTURE FOR SECURE
MOBILE DEVICES

Taking into account all of the above, we propose an

architecture for secure mobile devices based on current

state-of-the-art research and off-the-shelf hardware and

software components as shown in figure 2 (critical path

shown with bold lines). In addition to the existing hardware

components of flash memory, main CPU (application

processor, AP), wireless radios (baseband processor, BP),

smart card (secure element, SE), and touch screen, we

argue that the following software parts need to be added

or extended:

• The central component is virtualization, which

supports executing a minimal, secure operating

system alongside one or multiple standard mobile

operating systems such as Android. Although

software-only virtualization solutions (e.g. Xen)

exist, most virtual machine managers (hypervisors)

require adequate hardware support and therefore

a sufficiently new CPU. In addition to managing

access to memory and computation, the hypervisor

will also need to control access to wireless radios

and the touch screen.

• As described above, the touch screen is not

sufficient to indicate to the end user which of

the virtual guests is currently active. We suggest

a secure indicator, e.g. in the form of an RGB

LED that is under direct control of the hypervisor

and cannot be manipulated by any of the operating

systems.

• To verify that the correct virtual machine manager is

controlling the main CPU, radios, and touch screen,

bootup needs to be verified. The embedded smart

card is the obvious control point for such a secure

boot process, as it is the only trustworthy hardware

component when a device is turned on. Ideally, the

secure indicator should be directly connected to the

smard card to give the smart card an opportunity

to verify code executed on the main CPU during

each switch to another security zone (another virtual

guest).

• A secure operating system has the main task to

provide trustworthy user interaction via the touch

screen (as long as the secure indicator shows

that the secure OS is currently being executed),

and may act as a communication relay between

applets and backend services. We suggest that,

although such a secure OS should be as small as

possible to minimize the attack surface, high-level

languages with run-time checks should still be used

to minimize typical buffer overflow and comparable

coding errors in complex user interface systems.

• An applet manager is required to support the

installation and management of third-party applets

on the single embedded smart card. This applet

manager should (logically) communicate only with

the secure OS instance (physically, the smart card

will communicate with the main CPU, and therefore

access has to be mediated by the hypervisor).

• Standard encryption of mass storage such as flash

memory should be controlled by the hypervisor

to support different encryption keys for different

security zones (virtual guests). Ideally, these keys

should be stored securely on the embedded smart

card.

• Mandatory access control (MAC) should be

employed in each of the standard operating system

instances to better restrict third-party apps and

further minimize the attack surface. However, we

note that this is only a defense-in-depth measure,

but that we strongly suggest against relying on this

measure for the overall security of the system. MAC

schemes (such as SELinux) are built on top of the

standard operating system kernel (such as the Linux

kernel) and are subject to all security issues in these

kernels, which makes them insufficient as the main

approach for hardening the system.

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 9
DOI: 10.1002/sec

Prepared using secauth.cls



An Architecture for Secure Mobile Devices R. Mayrhofer

Mobile
OS 1

CPU (AP)Smartcard

Apps

Applets

Flash

Backend services
Software

Hardware

Services

Open Issue

Radios (BP)

Mobile
OS 2

Mobile
OS n

Secure
OS

Apps Apps

To
uc

h 
sc

re
en

Applet
manager

B
io

m
et

ric
au

th
en

t.

Virtualization (hypervisor)

Encryption

MAC MAC MAC

S
ec

ur
e

in
di

ca
to

r

Secure boot

biometric template
storage and verification

sw
itc

hi
ng

verification

Other devices

Sensor-based
device authent.

End-to-end
security critical
communication

Secure
mobile
device

Figure 2. Proposed architecture for secure mobile devices

• Biometric user authentication identifies the end

user. Ideally, the required biometric templates

should be stored and processed in applets running

on the smart card, which can then pass on the

authentication events to the hypervisor for allowing

or denying a switch to another security zone. Addi-

tionally, some of the operating system instances

may employ additional biometric authentication

schemes for more fine-grained access control within

apps. However, only authentication decisions com-

puted within the smart card or the secure OS may

be considered sufficiently trustworthy.

• To authenticate communication with other devices

over wireless communication channels, sensor-

based device authentication (cf. [24]) can be used to

support users in verifying which devices their own

mobile device is communicating with.

This architecture addresses the identified main issue of

enabling a secure communication channel with the end

user. Although we cannot cryptographically secure this

communication channel through untrusted components

(including the touch screen and main CPU), our proposed

solution only requires minimal hardware extensions such

as a secure indicator and deeper integration of embedded

smart cards into the boot process. In addition to the main

touch screen, users can then rely on this secure indicator

to show them which security context is currently active.

This prevents the attack of malicious apps masquerading as

the secure OS that was unsolved in previous mobile device

security research. The critical path is closed by biometric

authentication to safeguard against malicious user attacks.

7. PERFORMANCE CONSIDERATIONS

It is clear that any additional layer in a system architecture

will have a performance impact for applications. Out of the

technical approaches summarized above, we can identify

five areas with measurable overhead:

Virtualization is well-studied in terms of performance

overhead, and specific implementations have been opti-

mized towards minimizing the different areas of overhead.

In terms of virtualized network interfaces, recent measure-

ments with the KVM hypervisor on an ARM Cortex-A15

CPU showed a guest system to achieve roughly 85% of

the performance of the host [45] and therefore indicate

a non-negligible impact for high-speed network transfers

even when using the optimized “virtio” drivers for Linux

host and guest operating systems. We suggest that this

overhead, although significant for server side systems, is

not prohibitive for mobile clients, because the wireless

network links will in the majority of cases be the limiting

factors. The same study shows that guests achieve around

10 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

93% of the disk read performance, which is an important

factor for starting applications and reading assets, but the

overhead does not seem significant for standard use of

mobile devices.

CPU execution and memory access speeds are

sufficiently close to native speeds [45] with most

operations relevant to hypervisor operation in the range

of only 200-1000 processor cycles [18]. Even with

intentionally simplified hypervisors such as the L4 kernel

and without using hardware virtualization extensions,

typical applications only suffer about 5% overhead [46].

On-device storage memory encryption incurs over-

head by having to pass all read requests from the mass

storage (typically a flash memory) through decryption and

all write requests through encryption operations executed

on the main CPU. As we are not aware of scientific

literature studying the encryption overhead specifically for

Android in detail, we provide benchmark results from

a limited sample size as an indication of the rough

overhead created by on-device encryption. On a current

Asus Google Nexus 7 tablet (2013 version) with a quad-

core 1.5 GHz Snapdragon S4 Pro CPU running Android

version 4.4.2 and Linux kernel 3.4.0, we ran both the

specialized “AndroBench” app for I/O micro- and macro-

benchmarking and the widely used “AnTuTu” app for

high-level application benchmarking. All tests were run

5 times in a row each before and after enabling on-device

storage memory encryption to account for caching and

other warm-up effects of benchmarks such as JIT optimiza-

tions. We only consider the internal memory (formatted

with the ext4 filesystem and mounted as /data), but no

external memory such as microSD cards due to their slower

I/O busses.

As detailed in Table II, AndroBench sequential read

speed decreases by over 75% and sequential write

speed by about 50% for micro benchmarking cases,

which is also shown in the random read and write

access operations per second. Macro benchmarks reflect

these overheads with between 28% (browser benchmark)

and 75% (camera benchmark) slowdowns. Surprisingly,

AnTuTu I/O results do not show noticeable differences

with both the storage and database average slowdowns

in the area of their respective standard deviations of

measurements on unencrypted storage. Our conclusion

is that, although AnTuTu is a popular benchmark for

CPU and graphical performance, it does not represent

differences in raw I/O speed well enough to distinguish

between encrypted and unencrypted storage.

Mandatory access control such as SELinux demands

additional policy checks for many system calls. However,

I/O benchmarks with and without SELinux on an

older Android device showed only few cases with

statistically significant overhead caused by SELinux policy

checking [19]. Mostly file meta data intensive operations

such as directory listings or opening small files will see

any impact, while mass data operations such as sequential

reads and writes are not significantly slower. We note

that network connectivity was not benchmarked, but that

we do not expect performance limitations that would be

significant for applications.

Secure communication channels also require addi-

tional computational effort for encryption, integrity pro-

tection (and optional compression) of mass data streams.

Ignoring the computational overhead and latency of

key setup during channel initialization, Qu, Li, and

Dang measured the performance impact of OpenVPN

on Android [47]: a Motorola Xoom tablet directly con-

nected via local WLAN to a sufficiently fast Linux

server achieved a throughput of 25.45 MBit/s and 12.84 ms

latency without OpenVPN, up to 39.42 MBit/s with

16.79 ms with OpenVPN (with AES cipher) and com-

pression, and 21.15 Mbit/s with 13.55 ms latency with

OpenVPN without compression.

These results demonstrate roughly 30% increase in

latency, but also 55% increase in throughput due to

compression. If latency is an issue, then compression can

be disabled to reduce the latency overhead to roughly 5%

with 17% slowdown in throughput (presumably due to

additional protocol headers in the stack). We argue that

this overhead in latency as measured for the best case

(local WLAN) will not be significant for wide area network

connections over wireless links, and therefore the overhead

of a standard SSL/TLS secure channel implementation is

negligible on current mobile devices.

Key storage and cryptographic computation on smart
cards allow a significantly better security level, but will

be slower than on the main CPU due to the restricted

resources of smart cards. We have previously shown [14]

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 11
DOI: 10.1002/sec

Prepared using secauth.cls



An Architecture for Secure Mobile Devices R. Mayrhofer

Unencrypted AnTuTu [rating] AndroBench micro [MB/s, IOPS] AndroBench macro [ms]
storage database seq.rd. seq.wr. rnd.rd. rnd.wr. browser market camera camcorder

Try 1 1185 625 59,89 17,74 2526,81 288,5 82,75 214,25 203,25 488,5
Try 2 1182 630 59,92 18,29 2534,02 265,14 84,5 209,25 202 486,75
Try 3 1138 630 61,33 18,57 2479,74 290,3 86,5 205,75 195 489,25
Try 4 1012 635 63,38 20,21 2516,09 290,97 84 202,25 204 493,75
Try 4 896 630 63 19,42 2580,67 286,71 85 208,5 201,75 487,5
Mean 1082,6 630 61,50 18,85 2527,47 284,32 84,55 208 201,2 489,15
Std.dev. 125,74 3,54 1,65 0,97 36,34 10,85 1,37 4,44 3,59 2,74

Encrypted AnTuTu [rating] AndroBench micro [MB/s, IOPS] AndroBench macro [ms]
storage database seq.rd. seq.wr. rnd.rd. rnd.wr. browser market camera camcorder

Try 1 977 605 13,88 9,95 1504,18 203,4 113,5 275,25 287,25 628
Try 2 958 630 13,87 9,99 1497,75 203,54 105,25 271,75 275,5 808
Try 3 972 630 13,77 9,89 1502,57 200,13 109,5 442 294,75 693,25
Try 4 954 630 13,63 9,7 1499,52 143,93 102,5 309,5 454,25 924,75
Try 5 982 630 12,57 6,41 1358,1 141,52 110,25 461,5 445,5 992,5
Mean 968,6 625 13,54 9,19 1472,42 178,50 108,2 352 351,45 809,3
Std.dev. 12,12 11,18 0,55 1,56 63,96 32,70 4,34 92,50 90,16 152,67

Table II. Benchmark results for Galaxy Nexus 7 internal storage I/O, unencrypted (top) and encrypted (bottom)

that one major issue with the integration of smart cards on

mobile devices is their interface to the main CPU. While a

smart card in the form of a SIM card (UICC) has negligible

transfer delay, microSD cards using file based data transfer

can incur over 700 ms for one request/response message

exchange. Data that is already on the smart card can be

encrypted and decrypted fairly quickly (around 50 ms to

60 ms for AES en-/decryption of 128 bytes with 128 or

256 bit keylength, ca. 80 ms for hashing 128 bytes with

SHA-256), the only notable delay occurs during RSA

keypair generation (nearly 2 s).

We therefore conclude that cryptographic operations on

the smart card are not the bottleneck, but that transferring

data between the main CPU and the smart card is critical

for performance. For production use, a fast bus connection

is required, e.g. for an embedded secure element or a SIM

card.

User authentication and interaction are arguably the

most critical part, not only in terms of security, but also

in terms of overall system performance. Authentication

can consume significant time and attention from end users

and therefore needs to be optimized as far as possible. We

have previously worked on biometric authentication [36–

40] and are currently studying the user interaction aspect

of visualizing and switching between different virtual

zones [21]. However, the overall issue of secure and user-

friendly user authentication and interaction remains open

for future research.

8. CONCLUSIONS AND OUTLOOK

After systematically identifying threats to user data on

current mobile devices, we have analyzed the landscape of

technical approaches to addressing them and the significant

differences to traditional security measures from a security

point of view. To this end, we found the need for

additional technical components, namely virtualization,

further integration of existing embedded smart cards

with secure boot verification, and secure user interface

components. The biggest open issue is how to design

the user interaction in terms of data input and output in

such a way that users can reliably and unobtrusively be

aware of which application part they are communicating

with. This is currently unsolved and remains the most

important research question to advance the area of secure

mobile devices. We proposed a specific architecture for

secure mobile devices that builds upon existing hardware

components, but extends them with multiple security

measures that, in concert with each other, enable secure

end-to-end communication with end users.

12 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

In a cooperation with other research groups, we are

currently preparing an extensive user study concerning

the granularity of separating different parts of mobile

platforms/apps and on visualization and input concepts.

Results will be published as future work and we

expect them to inform our architecture decisions towards

addressing the question of intuitive secure user interaction.

ACKNOWLEDGEMENTS

This work has been carried out within the scope of

u’smile, the Josef Ressel Centre for User-Friendly Secure

Mobile Environments. We gratefully acknowledge support

by the Christian Doppler Gesellschaft, A1 Telekom Austria

AG, Drei-Banken-EDV GmbH, LG Nexera Business

Solutions AG, and NXP Semiconductors Austria GmbH.

Additionally, we are thankful to the anonymous reviewer

for comments that helped to improve an earlier version of

this article.

REFERENCES

1. Community framework for electronic signatures.

OJ L 13 of 19.1.2000 January 2000. URL

http://europa.eu/legislation_

summaries/information_society/

other_policies/l24118_en.htm.

2. Egners A, Meyer U, Marschollek B. Messing

with Android’s permission model. Proc. Trust-

Com 2012, IEEE CS Press, 2012; 505–514, doi:

10.1109/TrustCom.2012.203. URL http://dx.

doi.org/10.1109/TrustCom.2012.203.

3. Höbarth S, Mayrhofer R. A framework for on-

device privilege escalation exploit execution on

Android. Proc. IWSSI/SPMU 2011: 3rd International

Workshop on Security and Privacy in Spontaneous

Interaction and Mobile Phone Use, colocated with

Pervasive 2011, 2011.

4. Mayrhofer R. When users cannot verify digital

signatures: On the difficulties of securing mobile

devices. Proc. HPCC 2013: 15th IEEE International

Conference on High Performance Computing and

Communications, IEEE CS Press: Washington, DC,

USA, 2013; 1579–1584.

5. Nakamoto S. Bitcoin: A peer-to-peer electronic

cash system 2009; URL http://www.bitcoin.

org/bitcoin.pdf.

6. Egners A, Marschollek B, Meyer U. Hackers in

your pocket: A survey of smartphone security

across platforms. Technical Report AIB-2012-07,

RWTH Aachen May 2012. URL http://itsec.

rwth-aachen.de/publications/ae_

hacker_in_your_pocket.pdf.

7. Polla ML, Martinelli F, Sgandurra D. A survey on

security for mobile devices. IEEE Communications

Surveys & Tutorials February 2013; 15:446–471, doi:

10.1109/SURV.2012.013012.00028.

8. Halpert B. Mobile device security. Proceedings

of the 1st Annual Conference on Information

Security Curriculum Development, InfoSecCD ’04,

ACM: New York, NY, USA, 2004; 99–101, doi:10.

1145/1059524.1059545. URL http://doi.acm.

org/10.1145/1059524.1059545.

9. Karlson AK, Brush AB, Schechter S. Can I borrow

your phone? understanding concerns when sharing

mobile phones. Proc. CHI 2009, ACM Press, 2009;

1647–1650, doi:10.1145/1518701.1518953.

10. Dolev D, chih Yao AC. On the security of public key

protocols. IEEE Transactions on Information Theory

1983; 29:198–208, doi:10.1109/TIT.1983.1056650.

11. Roland M, Langer J, Scharinger J. Practical attack

scenarios on secure element-enabled mobile devices.

Near Field Communication (NFC) Workshop 2012,

2012; 19–24, doi:10.1109/NFC.2012.10.

12. Sailer R, Zhang X, Jaeger T, van Doorn L.

Design and implementation of a TCG-based integrity

measurement architecture. Proc. USENIX 2004: 13th

conference on USENIX Security Symposium, 2004;

223–238.

13. Rudolph C. Covert identity information in direct

anonymous attestation (DAA). Proc. IFIP SEC 2007,

IFIP, vol. 232, Springer-Verlag, 2007; 443–448, doi:

10.1007/978-0-387-72367-9 38.

14. Hölzl M, Mayrhofer R, Roland M. Requirements for

an open ecosystem for embedded tamper resistant

hardware on mobile devices. Proc. MoMM 2013:

11th International Conference on Advances in Mobile

Computing and Multimedia, ACM Press: New York,

NY, USA, 2013; 249–252.

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 13
DOI: 10.1002/sec

Prepared using secauth.cls



An Architecture for Secure Mobile Devices R. Mayrhofer

15. Asnake E, Hölzl M, Mayrhofer R. An efficient

password-authenticated secure channel for java card

applets. submitted for publication 2014.

16. Roland M, Langer J, Mayrhofer R. (ab)using

foreign vms: Running java card applets in non-

java card virtual machines. Proc. MoMM 2013: 11th

International Conference on Advances in Mobile

Computing and Multimedia, ACM Press: New York,

NY, USA, 2013; 286–292.

17. Brakensiek J, Dröge A, Botteck M, Härtig H,

Lackorzynski A. Virtualization as an enabler for

security in mobile devices. Proc. IIES 2008, ACM

Press, 2008; 17–22, doi:10.1145/1435458.1435462.

URL http://doi.acm.org/10.1145/

1435458.1435462.

18. Varanasi P, Heiser G. Hardware-supported

virtualization on ARM. Proceedings of the Second

Asia-Pacific Workshop on Systems, APSys ’11, ACM,

2011; 11:1–11:5, doi:10.1145/2103799.2103813.

URL http://doi.acm.org/10.1145/

2103799.2103813.

19. Shabtai A, Fledel Y, Elovici Y. Securing Android-

powered mobile devices using SELinux. IEEE

Security and Privacy 2010; 8:36–44, doi:http://doi.

ieeecomputersociety.org/10.1109/MSP.2009.144.

20. Seifert J, Conradi ADLB, Hussmann H. Treasure-

Phone: Context-sensitive user data protection on

mobile phones. Proc. Pervasive 2010, LNCS, vol.

6030, Springer-Verlag, 2010; 130–137, doi:10.1007/

978-3-642-12654-3 8.

21. Riedl P, Koller P, Mayrhofer R, Kranz M, Möller A,

Koelle M. Visualizations and switching mechanisms

for security zones. Proc. MoMM 2013: 11th

International Conference on Advances in Mobile

Computing and Multimedia, ACM Press: New York,

NY, USA, 2013; 278–281.

22. Oberheide J, Veeraraghavan K, Cooke E, Flinn J,

Jahanian F. Virtualized in-cloud security services for

mobile devices. Proceedings of the First Workshop on

Virtualization in Mobile Computing, MobiVirt ’08,

ACM: New York, NY, USA, 2008; 31–35, doi:10.

1145/1622103.1629656. URL http://doi.acm.

org/10.1145/1622103.1629656.

23. Kumar A, Saxena N, Tsudik G, Uzun E. Caveat

emptor: A comparative study of secure device pairing

methods. Proc. PerCom2009, 2009; 1–10.

24. Mayrhofer R, Fuss J, Ion I. UACAP: A unified

auxiliary channel authentication protocol. IEEE

Transactions on Mobile Computing April 2013;

12(4):710–721, doi:10.1109/TMC.2012.43.

25. Mayrhofer R, Gellersen H. Shake well before use:

Intuitive and secure pairing of mobile devices.

IEEE Transactions on Mobile Computing June 2009;

8(6):792–806. Revised and extended version of [48].

26. Groza B, Mayrhofer R. SAPHE - simple accelerom-

eter based wireless pairing with heuristic trees.

Proc. MoMM 2012: 10th International Conference

on Advances in Mobile Computing and Multimedia,

ACM Press: New York, NY, USA, 2012; 161–168.

27. Mayrhofer R. The candidate key protocol for

generating secret shared keys from similar sensor

data streams. Proc. ESAS 2007: 4th European

Workshop on Security and Privacy in Ad hoc and

Sensor Networks, LNCS, vol. 4572, Springer-Verlag:

Berlin, Heidelberg, Wien, 2007; 1–15.

28. Mayrhofer R. Towards an open source toolkit for

ubiquitous device authentication. Workshops Proc.

PerCom 2007: 5th IEEE International Conference on

Pervasive Computing and Communications, IEEE CS

Press: Washington, DC, USA, 2007; 247–252. Track

PerSec 2007: 4th IEEE International Workshop on

Pervasive Computing and Communication Security.

29. Mayrhofer R, Welch M. A human-verifiable authen-

tication protocol using visible laser light. Proc. ARES

2007: 2nd International Conference on Availability,

Reliability and Security, IEEE CS Press: Washington,

DC, USA, 2007; 1143–1147.

30. Soriente C, Tsudik G, Uzun E. HAPADEP: Human

asisted pure audio device pairing. Cryptology ePrint

Archive, Report 2007/093 March 2007.

31. Soriente C, Tsudik G, Uzun E. BEDA: Button-

enabled device pairing. Proc. IWSSI 2007, 2007;

443–449.

32. Sigg S, Schuermann D. Secure communication based

on ambient audio. IEEE Transactions on Mobile

Computing (TMC) February 2013; 12:331–340, doi:

10.1109/TMC.2011.271.

33. Saxena N, Ekberg JE, Kostiainen K, Asokan N.

Secure device pairing based on a visual channel.

Cryptology ePrint Archive, Report 2006/050 2006.

34. Nithyanand R, Saxena N, Tsudik G, Uzun E.

Groupthink: On the usability of secure group

14 Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls



R. Mayrhofer An Architecture for Secure Mobile Devices

association of wireless devices. Proc. Pervasive 2010,

LNCS, Springer-Verlag, 2010.

35. Varshavsky A, Scannell A, LaMarca A, de Lara

E. Amigo: Proximity-based authentication of mobile

devices. Proc. UbiComp 2007, Springer-Verlag,

2007; 253–270.

36. Findling R, Mayrhofer R. Towards pan shot face

unlock: Using biometric face information from

different perspectives to unlock mobile devices.

International Journal of Pervasive Computing and

Communications (IJPCC) 2013; 9:190–208, doi:10.

1108/IJPCC-05-2013-0012. A preliminary version of

this work was published in MoMM 2012 with a

limited set of classifiers and a significantly smaller

data set used for evaluation.

37. Findling R, Wenny F, Holzmann C, Mayrhofer

R. Range face segmentation: Face detection and

segmentation for authentication in mobile device

range images. Proc. MoMM 2013: 11th International

Conference on Advances in Mobile Computing and

Multimedia, ACM Press: New York, NY, USA, 2013;

260–269.

38. Findling R, Mayrhofer R. Towards secure personal

device unlock using stereo camera pan shots. Proc.

EUROCAST 2013: 14th International Conference on

ComputerAided Systems Theory, LNCS, Springer-

Verlag: Berlin, Heidelberg, Wien, 2013; 417–425.

39. Muaaz M, Mayrhofer R. An analysis of different

approaches to gait recognition using cell phone

based accelerometer. Proc. MoMM 2013: 11th

International Conference on Advances in Mobile

Computing and Multimedia, ACM Press: New York,

NY, USA, 2013.

40. Mayrhofer R, Kaiser T. Towards usable authentica-

tion on mobile phones: An evaluation of speaker

and face recognition on off-the-shelf handsets. Proc.

IWSSI/SPMU 2012: 4th International Workshop on

Security and Privacy in Spontaneous Interaction and

Mobile Phone Use, colocated with Pervasive 2012,

2012. Available online at http://www.medien.

ifi.lmu.de/iwssi2011/.

41. Riva O, Qin C, Strauss K, Lymberopoulos D. Pro-

gressive authentication: deciding when to authen-

ticate on mobile phones. Proc. USENIX 2012,

USENIX, 2012; 301–316.

42. Oberheide J, Jahanian F. When mobile is harder

than fixed (and vice versa): demystifying security

challenges in mobile environments. Proceedings

of the Eleventh Workshop on Mobile Computing

Systems & Applications, ACM, 2010; 43–48.

43. Feske N, Helmuth C. A Nitpicker’s guide to a

minimal-complexity secure GUI. 21st Annual Com-

puter Security Applications Conference (ACSAC),

2005; 85–94.

44. Gilad Y, Herzberg A, Trachtenberg A. Securing

Smartphones: A Micro-TCB Approach. ArXiv e-

prints Jan 2014; .

45. Rasmusson L, Corcoran D. Performance overhead

of KVM on Linux 3.9 on ARM Cortex-A15.

Proceedings of VtRES: Workshop on Virtualization

for Real-Time Embedded Systems, 2013.

46. Xu Y, Bruns F, Gonzalez E, Traboulsi S, Mott

K, Bilgic A. Performance evaluation of para-

virtualization on modern mobile phone platform.

Proc. of International Conference on Computer,

Electrical, and Systems Science, and Engineering,

2010; 237–244.

47. Qu J, Li T, Dang F. Performance evaluation and anal-

ysis of OpenVPN on Android. Proc. of Fourth Inter-

national Conference on Computational and Infor-

mation Sciences 2012; 0:1088–1091, doi:http://doi.

ieeecomputersociety.org/10.1109/ICCIS.2012.203.

48. Mayrhofer R, Gellersen H. Shake well before use:

Authentication based on accelerometer data. Proc.

Pervasive 2007: 5th International Conference on

Pervasive Computing, LNCS, vol. 4480, Springer-

Verlag: Berlin, Heidelberg, Wien, 2007; 144–161.

Security Comm. Networks 2014; 00:1–15 c© 2014 John Wiley & Sons, Ltd. 15
DOI: 10.1002/sec

Prepared using secauth.cls


