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Abstract

Authenticating spontaneous interactions between devices and users is challenging for several rea-
sons: the wireless (and therefore invisible) nature of device communication, the heterogeneous nature of
devices and lack of appropriate user interfaces in mobile devices, and the requirement for unobtrusive
user interaction. The most promising approach that has been proposed in literature involves the exploita-
tion of so-called auxiliary channels for authentication to bridge the gap between usability and security.
This concept has spawned the independent development of various authentication methods and research
prototypes, that, unfortunately, remain hard to compare and interchange and are rarely available to po-
tential application developers. We built a system which implements and unifies these approaches. In this
paper, we present OpenUAT, an open source toolkit that implements our novel, unified cryptographic au-
thentication protocol (UACAP), and a comprehensive range of specific auxiliary channels. We evaluated
OpenUAT based on a user study in which we compared four authentication methods implemented by the
toolkit. The user study showed that users tend to prefer the visual channel in spite of its comparatively
poor performance.

1 Introduction

Security in Ubiquitous Computing is currently a hot topic; as many research projects mature and their core
findings start to influence real-world applications, non-functional requirements become increasingly more
important. Security is one of the most important of these non-functional requirements and is a prerequisite
to wide deployment.1 Using standard cryptographic approaches, many security requirements – for example
confidentiality, integrity, non-repudiability, auditability, or access control – can be fulfilled once all involved
parties have been successfully authenticated. Authentication is therefore required to secure any interaction.
Within the vision of ubiquitous computing, this is a particularly challenging task mostly due to three main
reasons: (1) wireless communication channels are insecure, (2) many devices lack sufficiently capable user
interfaces, and (3) user attention does not scale.

These problems have, over the past years, spawned the development of different authentication meth-
ods for specific application areas (e.g. [23, 10, 28, 20, 29, 33, 21, 22, 24]). However, most of these efforts
are still separate and thus difficult to compare and not interchangeable. Actual implementations are often
unavailable or otherwise restricted to specific, prototypical demonstration applications. This hinders both
additional research on authentication methods for ubiquitous computing and application developers using
those that have already been suggested. We therefore need a unified basis for comparable and interchange-
able protocols and a library of ready-made implementations aimed at in-production deployment. To this

1Unfortunately, this is often neglected and product manufacturers as well as standardization bodies often try to retrofit security
measures onto otherwise fixed projects. The recent track record shows that this procedure is clearly unsuccessful in producing
secure systems.
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end, we previously suggested to develop an open source toolkit implementing some of these methods with
a common structure [19].

We use the following application scenarios as motivating examples that illustrate different potential use-
cases for our system. In all these cases, selecting the intended communication partner is a major issue, with
potentially tens of different wireless networks and hundreds of unknown devices in these networks. De-
pending on the lifetime of the keys exchanged, we distinguish between short-lived associations (ephemeral
“one-shot” keys, used just once) and long-lived pairings (keys are stored and reused for future communica-
tion between the devices).

1. Exchanging vCards and PGP keys: Alice and Bob meet at a conference and wish to exchange contact
information (vCards) and PGP keys for future remote communication. This exchange is short-lived,
as their mobile phones are unlikely to directly communicate again. A specific issue is spontaneous
authentication with severely limited user interfaces and highly personal devices that users might not
wish to hand over.

2. Printing a confidential document on a Bluetooth printer: Alice is in the airport and wishes to use the
(partially) trusted printer in her waiting lounge to print multiple parts of a confidential report saved on
her phone. Keys may be reused for printing separate documents after initial establishment. A specific
issue is selecting the “correct” printer in a list of similar ones.

3. Connecting a mobile phone to a Wi-Fi router: While visiting his friend’s house, Bob wishes to check
his email. He connects his smart phone to his friend’s wireless LAN. Keys may be long-lived to be
reused on future visits, but authorization may be limited to the actual visits. A specific issue is that
the wireless access point might not be directly accessible.

4. Temporarily pairing a mobile phone and Bluetooth headset: Alice wishes to talk on the phone while
driving and borrows a Bluetooth headset to make a single call. Keys are short-term, because she
returns the headset after use. A specific issues is that a headset typically has no user interface besides
a single button (and audio).

5. Permanently pairing a mobile phone and Bluetooth headset: Alice wishes to listen to music using her
mobile phone and a stereo Bluetooth headset.

In this paper, we present a system that can be used to securely pair heterogeneous devices in situations
like the ones presented above. The main contribution of the paper is OpenUAT, an open source toolkit that
implements multiple auxiliary channels. By supporting a comprehensive set of different auxiliary channels,
OpenUAT can adapt to different device capabilities (e.g. no display, no audio interface, limited input only),
pairing context and environment (e.g. bright daylight, night, noisy environment, public place) and user
preferences and capacities (e.g. users with handicaps). We present the OpenUAT implementation and its
modular, extensible design in Section 4. The implemented auxiliary channels run on top of UACAP, a novel
unified cryptographic protocol for device authentication, which brings an important amount of novelty and
stands as a contribution of this paper. We introduce UACAP in Section 3. Finally, in Section 5 we conduct a
dual evaluation of the system. Firstly, we analyze the security of UACAP, its underlying protocol. Secondly,
we prove through an user study how OpenUAT can be used to easily select different auxiliary channels for
pairing and act as a framework for usability studies.

2 Related Work

Over the last few years, different cryptographic protocols for multi-channel authentication have been pro-
posed (e.g. [9, 17, 2, 11, 34, 5, 4, 2, 36]. Most of them have in common that they assume a main wireless
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communication channel and a more restricted, so-called auxiliary or out-of-band channel. While the main
channel has – in terms of cryptographic key exchange – practically unlimited bandwidth, the auxiliary
channel is often limited to either short messages or slow and/or obtrusive transfer. Consequently, different
cryptographic protocols have been developed to exploit these diverse characteristics for the purpose of se-
cure authentication between devices, users, and services. However, this diversification of protocols means
that they are not easily interchangeable and that security analysis need to be done for each of them. In the
present paper, for the first time, we contribute a unified protocol that can exploit any combination of secu-
rity guarantees from arbitrary auxiliary channels. UACAP is a unification of some of the recently proposed
protocols, retaining their security properties with a minimal number of messages.

A considerable amount of prior work on using auxiliary channels to establish shared secret keys be-
tween two (or multiple) devices has been presented. The “resurrecting duckling” as a pairing model sug-
gested direct electrical contact [30], while “constrained channels” [13] and “location-limited channels” [2]
were proposed as more general models of auxiliary channels for authentication purposes. Specific auxil-
iary channels are video by using mobile phone cameras and 2D barcodes [23], blinking patterns [27], or
laser channels [22], audio by comparing spoken sentences [10] or MIDI tunes [28], ultrasound [21], mo-
tion by common movement [20], gestures [24], or synchronised button presses [29], or radio frequency by
measuring common environment [33].

Part of this research is slowly moving into products. The Bluetooth Simple Secure Pairing (SSP) [3]
and the Wi-Fi Protected Setup (WPS) [35] already use some of the results on pairing protocols, although
initial implementations will be limited to standard display and keypad entry methods. Apple intends to
“make users lives easier by letting them pair wireless devices just by bringing them together”.2 Envisaged
applications are pairing Bluetooth mice or keyboards, which currently use empty (and therefore insecure)
passwords, with laptops or desktop PCs. However, these approaches are so far completely separate with
different cryptographic protocols and implementations. OpenUAT aims to implement as many auxiliary
channels as possible in a common structure so that they are comparable and interchangeable.

Usability is a major issue in the design of any secure system. Secure systems protocols may be used
insecurely or not at all if users feel that they do not understand the underlying principles or if they find secu-
rity measures obtrusive. Effective security therefore can only be achieved by giving special consideration to
end users. In practice, mock-ups are rarely sufficient. Interesting user behavior and many more additional
issues surface when user studies are done with functional (but maybe prototypical) applications. In [14],
Kostiainen and Uzun propose a framework for comparative usability testing of distributed applications and
in [32], Uzun et al. analyze usability of different pairing methods. Suomalainen et al. present a comparative
analysis of security associations in personal networks [31]. However, such comparative studies are cur-
rently hindered by the lack of available implementations and remain, therefore, often limited to mock-ups or
Wizard-of-Oz studies that can hardly discover issues in real-world deployment. In contrast, OpenUAT aims
to provide usable implementations to support rapid application development and is, therefore, more specific
than high-level frameworks concerned with usability.

Balfanz et al. [1] propose a system called “Network-in-a-box” that effectively reduces the time and task
complexity of connecting a laptop or mobile phone to a wireless router, using a location limited auxiliary
channel. This is a perfect example of applying research results in secure device pairing to improve the
security and usability of real world systems. We take such research further and aim to target a broader
application context. By implementing more auxiliary channels, our system aims to support a wider variety
of devices and application scenarios.

In the area of peer-to-peer (P2P) networks, two platforms stand out: JXTA [15] for connecting and
communicating with networked devices, and MyNet [12] for personal and social networks. Both JXTA

2http://www.appleinsider.com/articles/08/09/27/apple_seeks_distance_based_pairing_
auto_contact_data_patents.html.
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and MyNet assume unique, secure device identifiers and pre-established public or secret keys, and provide
support for device authorization and fine-grained resource access control. Therefore, they remain comple-
mentary to the aims of OpenUAT, which could be used to bootstrap device pairing for both systems as a
basis for further communication, thus coping with the dynamicity of the pervasive computing environment.

We designed OpenUAT to be a toolkit instead of a framework [19]; by providing a library of intercon-
nected methods instead of forcing applications to conform to a specific pattern, toolkits may be easier to
use in different scenarios. Other toolkits in the area of ubiquitous computing include the widely used “Con-
text Toolkit” [26], the “Subtle” toolkit for determining interruptibility [8], and “Place Lab” for determining
location [16]. The “OpenSSL” toolkit3 is currently one of the most widely used cryptographic toolkits for
applications written in various languages while the “Bouncy Castle” toolkit4 implements these primitives
and protocols specifically for Java. OpenUAT builds on top of these layers to provide authentication methods
and secure channels, which in turn can be used by applications or application frameworks.

3 Unified Auxiliary Channel Authentication Protocol (UACAP)

UACAP, our Unified Auxiliary Channel Authentication Protocol, is based on the recent proposal by Laur and
Nyberg called MA-DH [17], but adopts aspects of the MANA III variant described by Wong and Stajano [36]
and an option for pre-authentication as suggested, among others, by Balfanz et al. [2]. Its main part relies
on the well-known (Merkle-) Diffie-Hellman (DH) key agreement [6] with a prior one-way commitment to
prevent the most basic man-in-the-middle (MITM) attacks. The result of this main phase is a secret session
key shared between two devices. Then, to ascertain that the intended devices share this key and there really
is no other device involved (by accidentally pairing with the wrong device or malicious MITM attack), the
obtained key must to be authenticated using the properties of an auxiliary channel.

Depending on the application scenario and properties of the auxiliary channel, UACAP supports differ-
ent modes of operation from a user point of view:

• Input channels allow the user to provide common input to all involved devices, for example by explicit
PIN code entry (cf. [9]), synchronous button presses (cf. [29]), or shaking them together (cf. [20]).
We need to further distinguish if the user input can be shielded from others or not:

– IN: Non-confidential input must happen interactively during the protocol run.

– IC:Confidential “pre-authentication” is possible before the main protocol part and with no fur-
ther interaction on the auxiliary channel. This is the only case in which the auxiliary channel
must be confidential; in all other protocol cases it is sufficient to be authentic.

• Transfer channels support direct, user-mediated (and ideally human-verifiable) transmission of mes-
sages, for example by capturing a 2D barcode displayed on one device with the camera of another (cf.
[23]) or audible MIDI sequences (cf. [28]). We further distinguish according to the auxiliary channel
bandwidth:

– TS: Short transfer (10–60 Bits) must happen interactively during the protocol run.

– TL: Long “pre-authentication” (≥128 Bits) is possible before the main protocol part and with
no further interaction on the auxiliary channel (non-interactive with respect to the auxiliary
channel). This has the advantage that, by taking place before any communication on the main
wireless channel, required addresses (for example MAC or IP addresses) may also be transmitted
in the same pre-authentication message to support easy-to-use device selection methods.

3http://www.openssl.org
4http://www.bouncycastle.org

4

http://www.openssl.org
http://www.bouncycastle.org


 0 .  I n i t i a l i z a t i o n

2 .  D H  K e y  e x c h a n g e  w i t h  p r e - c o m m i t m e n t

1 . T L  T r a n s f e r
 c o m m i t m e n t s

3 . T S  T r a n s f e r
 h a s h e s  O

O K A B O R T

E q u a l ?

3 . T L  C o m p a r e
 c o m m i t m e n t s

3 . I N / I C  E x c h a n g e  h a s h e s  Q

3 . I N / I C  R e v e a l  n o n c e s  &  
c o m p a r e  h a s h e s  Q

3 . T S  C o m p a r e
 h a s h e s  O

3 . V  U s e r
c o m p a r e s
 h a s h e s  O

Y e s N o

1 . I C  I n p u t  s e c r e t
R  - >  A ,  B

1 .  P r e - a u t h e n t i c a t i o n

3 . I N  I n p u t  s e c r e t
R a  - >  A ,  R b  - > B

3 .  K e y  v e r i f i c a t i o n

3 . V  D i s p l a y
 h a s h e s  O

3 . I N  I n p u t  s e c r e t
R b  - >  A ,  R a  - > B

T S

T S I C

V

T L

T L

V

I C

I N

I N

Figure 1: UACAP overview: different options for key verification

• Verification channels allow the user to compare data from different devices, for example by reading
non-sensical English sentences (cf. [10]), comparing random visual art (cf. [25]), or MIDI tunes (cf.
[28]). We denote this option:

– V: Explicit user verification can always use “short” bit strings in the range of 10–20 Bits over a
public, non-confidential medium and must be done after the main protocol part.

These options depend on the choice of authentication mode (transfer, verify or input) and channel type
(short or long, confidential or non-confidential) and may be predetermined by the respective application
scenario (e.g. direct input is not possible when interacting with non-accessible infrastructure devices like
large, distant screens). The main part of the protocol that is responsible for the actual key agreement and its
cryptographic security is universal among all cases of authentication.

In the following, we describe UACAP on three levels: First, the overview in Fig. 1 depicts the logical
flow of UACAP, pointing out the decision points and different options at different steps, until reaching
the final decision; second, Fig. 2 presents a detailed specification on the level of cryptographic operations
and variables exchanged in messages; third, we describe the current reference implementation in terms of
on-the-wire message transfer and protocol commands in section 4.2.

Protocol Specification

In the protocol description in Fig. 2, the different options are indicated in the heading of specific steps and
are only executed for the respective channel type. Mandatory parts are indicated with a grey background.
Channels over which messages are transmitted are either the main wireless channel (RF), an authentic but
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“short” (AS), authentic and “long” (AL), or an authentic and confidential but “short” (ACS) auxiliary chan-
nel. Note that all auxiliary channels must always provide authenticity, which is the primary reason for their
use in authenticating device interaction.

When the (short) user input values Ra and Rb can be guaranteed to remain confidential until the protocol
run finishes, then they may be provided to both devices at the same time and before even starting the protocol,
and Ra and Rb may be equal. If Ra and Rb are only authentic but not confidential (and if they are “short” in
terms of brute-force attacks), then they must not be made public until Step 3 in any case. At this time, they
must be provided to the respective other device, but may be made fully public.

For the formal description in Figure 2, the following notation is used: H(m) describes the hashing of
message m with some secure hash, and m|n the concatenation of strings m and n. Subscripts denote the
different sides (a or b for an authentication between A and B). The notation X̃ is used to point out that a
variable X has been sent over an insecure channel and may therefore have been modified (by transmission
error or malicious behavior). SHADBL-256 is used as a secure hash for H , which is a double execution of
the standard SHA-256 message digest to safeguard against length extension and partial-message collision
attacks [7] and is defined as SHADBL-256 (m) = SHA-256 ((SHA-256 (m)) |m). Com(x) describes a
cryptographic commitment and is also implemented as Com(x) := SHADBL-256(x).

The protocol execution consists of several steps:

0. Initialize This phase is common to all protocol options (TL, TS, V, IN, IC) and initializes the DH pa-
rameters (the base g is assumed to be publicly known) and identities of the involved parties. The (potentially
ephemeral) identity of a party, for example their network address, is represented by Ia and Ib for parties A
and B, respectively. In the current form, nonces (in combination with network addresses) are used to prevent
replay attacks even when DH keys are not ephemeral.

1. Pre-authentication In this phase, pre-authentication data is used before starting the actual key ex-
change protocol. This has the advantage that the actual protocol run can be non-interactive and thus even
more unobtrusive to the user. It also means that the part requiring user involvement (transfer or input) can
happen at any time before the associated devices start their wireless interaction. Pre-authentication is only
supported in the following two cases:

• TL: Commitments are exchanged over the authentic channel. As these commitments must be at least
128 bits long to ensure adequate levels of security, the same is not applicable to the TS case, where
only short messages can be exchanged. This step is depicted as 1.TL Transfer commitments.

• IC: A common, short secret R is input to both devices on a confidential channel (1.NC Input se-
cret). R must remain confidential until the protocol finishes. Such confidential user input can be
sensor data such as the accelerometer time series resulting from shaking devices together, or the same
password/PIN entered on all devices (and shielded from others).

2. Diffie-Hellman key exchange with pre-commitment This part is mandatory and common to all pro-
tocol options, as indicated by the grey background in Figure 2. Optional parameters for specific protocol
instances (for example the number of rounds of an interlock scheme as in the ultrasonic spatial authentica-
tion protocol [21]) can be transmitted from the initiator A to the responder B in plain text using the optional
variable Pa. If not required, it may simply be omitted in the first message (indicated with the notation [Pa]).
By waiting to initialize the responder’s ephemeral DH key until after the initiator’s commitment has been
received, denial-of-service attacks become (marginally) harder.
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Channel A (initiator) Message B (responder)

0. INITIALIZE
Ia ∈ {0 . . . 2128 − 1} Ib ∈ {0 . . . 2128 − 1}
x ∈ {1 . . . q − 1} y ∈ {1 . . . q − 1}
X := gx Y := gy

[1.TL: TRANSFER COMMITMENTS]
AL OCX := Com(X) M0,a := (Ia, OCX )

(≥ 128 Bits) -
AL M0,b := (Ib, OCY ) OCY := Com(Y )

� (≥ 128 Bits)

[1.IC INPUT SECRET]
ACS INPUT Ra = R INPUT Rb = R

2. KEY EXCHANGE (DH) WITH PRE-COMMITMENT
RF CX := Com(X) M1 := (Ia, CX [, Pa])

-
M2 := (Ib, Y )

RF Ka := H(Ỹ x) �
M3 := (X) if Com(X̃) 6= C̃X

RF - then ABORT else OK

else Kb := H(X̃y)

3. OOB KEY VERIFICATION

OIa := (Ia|Ĩb) OIb := (Ĩa|Ib)

OKa := (X|Ỹ ) OKb := (X̃|Y )
Oa := HMACOKa (OIa) Ob := HMACOKb

(OIb)

(ca. 10 . . . 60 Bits) (ca. 10 . . . 60 Bits)

[3.TL: COMPARE COMMITMENTS]
Com(Ỹ ) 6= ÕCY if Com(X̃) 6= ÕCX
then ABORT else OK then ABORT else OK

[3.V: DISPLAY HASHES O, USER VERIFY]
AS OUTPUT Oa OUTPUT Ob
AS INPUT OK iff Oa = Ob INPUT OK iff Oa = Ob

[3.TS: TRANSFER HASHES]
AS M4,a := Oa

-
if Õa! = Ob
then ABORT
else OUTPUT OK

AS INPUT OK iff B did not ABORT
(without transfer from B to A)

AS M4,b := Ob
�

if Õb! = Oa
then ABORT
else OUTPUT OK

AS INPUT OK iff B did not ABORT
(without transfer from A to B)

[3.IN: NON-CONF. INPUT]
AS INPUT Ra INPUT Rb

3.IN/IC: EXCHANGE HASHES Q
Ja ∈ {0 . . . 2128 − 1} Jb ∈ {0 . . . 2128 − 1}
Qa := HMACOKa|Ja

(OIa|Ra) Qb := HMACOKb|Jb
(OIb|Rb)

RF M5,a := (Qa)
-

RF M5,b := (Qb)
�

[3.IN: NON-CONF. INPUT EXCHANGE]
AS INPUT Rb INPUT Ra

[3.N/IC: REVEAL NONCES AND COMPARE]
RF M6,a := (Ja)

-
RF M6,b := (Jb)

�
if HMAC

OKa|J̃b

(OIa|Rb) 6= Q̃b if HMAC
OKb|J̃a

(OIb|Ra) 6= Q̃a

then ABORT else OK then ABORT else OK

Figure 2: Unified Auxiliary Channel Authentication Protocol (UACAP) specification
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3. Out of Band (OOB) key verification This first part initializes the components for the key verification
while the actual OOB verification depends on the chosen protocol option. A double line indicates where the
protocol part ends for the respective options.

• TL: Commitments of the DH parameters have been exchanged in the pre-authentication phase. For
verification, it therefore suffices to compare those commitments with the locally computed ones.

• V: Verification hashes Oa and Ob are displayed to the user for comparison. This can be done either
by showing MADLib sentences, displaying hexadecimal hash representation, or playing MIDI tunes,
etc. The user inputs OK if hashes match, otherwise the protocol fails.

• TS: Hashes Oa and Ob are transferred over the authentic but short channel and subsequently compared
with the local ones. If they match on both devices, the key exchange completes successfully.

• IN/IC: Only in the IN case, the user must first input Ra to device A and a different Rb to device B.
Next, devices compute and exchange hashes Qa and Qb. Nonces Ja and Jb are used to protect against
replay attacks. Steps 3.IN/IC in Figure 2 are common to the input case, both for confidential and
non-confidential subcases, and must be executed in order. For the confidential case IC, the common
secret R = Ra = Rb was input to both devices during the pre-authentication phase and no further
input is required. Only in the IN case, the user now inputs Rb to device A and Ra to device B. Finally,
nonces Ja and Jb are made public, and the hashes Qa and Qb are verified by A and B.

4 OpenUAT

OpenUAT aims to be an open-source, ready-to-use toolkit for authentication in ubiquitous computing ap-
plications. The methods and protocols it implements are selected and designed to be intuitive and usable
for the end user, and the overall toolkit aims to be modular and compact for the developer. Most parts are
implemented in Java and verified to work on most Java virtual machines (JVMs) including Java 2 Micro
Edition (J2ME) as available on many off-the-shelf mobile devices. However, protocol implementations use
ASCII commands whenever possible to ease interoperability with other platforms (as specified below in
section 4.2). A central design pattern is to use asynchronous, background processing and event notification.
This has the advantage that applications and their user interfaces are not blocked by potentially lengthy
protocol runs and that events provide a general “hooking” mechanism to react to various stages of authen-
tication. All core parts are documented using Javadoc and covered by JUnit tests to ensure API stability
during code changes. In the following, we describe the main components, pointing out how the UACAP
specification is currently implemented.

4.1 Structure

Figure 3 depicts the architecture and components of the OpenUAT toolkit from an application point of view.
Three central components are especially noteworthy:

• RemoteConnection is an interface for in-band (main, RF) communication between devices and
abstracts arbitrary communication channels. Currently implemented are TCP sockets and Bluetooth,
and prototypes for communication via Jabber chat and HTTP servers already exist to avoid NAT
and other communication issues. Other RF channels can be easily added by extending the abstract
class RemoteConnection. For Bluetooth communication, additional helper classes provide peer
device search, service registration, and service search (BluetoothPeerManager) as well as com-
plete management of opportunistic key agreement to better deal with slow Bluetooth communication
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Figure 3: OpenUAT toolkit: Components and interactions

(BluetoothOpportunisticConnector). UDP multicast communication is supported sepa-
rately for non-DH protocols (e.g. CKP [18]).

• OOBChannel is the corresponding interface for auxiliary channels besides the main, in-band chan-
nel. It is described in more detail in section 4.3.

• Steps 0 and 2 in UACAP are implemented by the central HostProtocolHandler class. Upon
successful completion of the DH key exchange, it raises a corresponding event with the registered
AuthenticationProgressHandler. The different modes explained above in section 3 can be
pre-set before starting the protocol run: for “long” pre-authentication transfer, one side can fetch the
respective message and transmit it over an auxiliary channel so that the other side can provide it to its
HostProtocolHandler instance; for “short” confidential pre-authentication input, both sides can
provide the same byte string. All other modes start in step 3, i.e. the out-of-band verification using dif-
ferent OOBChannel implementations depending on the verification mode (verify, input, or transfer)
and on the type of auxiliary channel (see table 1). This step often involves user interaction/assistance
(e.g. taking a picture of the barcode, shaking devices together, manual input) or decision making (e.g.
comparing melodies, sentences, images).

Cryptographic primitives are used either from Java JSSE/JCE cryptographic extensions or, when not
available (as is the case in J2ME), provided by the Bouncy Castle toolkit. OpenUAT currently wraps Diffie-
Hellman key agreement (SimpleKeyAgreement), AES, SHA-256, and SHADBL-256 (Hash) and pro-
vides implementations of HMAC (Hash), interlock* (InterlockProtocol), and CKP (Candidate-
KeyProtocol and CKPoverUDP). Sensor data acquisition is supported by standard statistical features
such as moving average or windowed variance for floating point and integer computation (TimeSeries
and TimeSeries_Int, respectively). Simple activity detection of multi-dimensional sensors based on
variance thresholds (TimeSeriesBundle), quantization (Quantizer), floating and fixed point Fast
Fourier Transform (FFT and FPIntFFT), and the coherence function (Coherence) build upon the basic
time series for more complex feature extraction. Most of these are currently used for determining if devices
are shaken together [20] but are applicable to arbitrary sensor data.

A key manager (KeyManager) assists in securely keeping track of pairwise keys with other devices
and can be registered as AuthenticationProgressHandler to automatically receive keys created
and authenticated by HostProtocolHandler and higher level protocols.
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Additionally, logging is supported both on J2SE (based on log4j) and J2ME (using either microlog or
openbandy) by using an abstract Log interface for all utility classes and applications.

4.2 UACAP Reference Implementation

In the current reference implementation of UACAP in OpenUAT, the following protocol commands are
assumed to be executed in order. A client (or initiator) A connects to the server (or responder) B to start a
protocol run. Then, following common Internet protocols, the server starts by sending its greeting:

1. “HELO OpenUAT Authentication”, sent by B, indicates that the client may start its authenti-
cation request, i.e. that the (insecure, in-band) channel the client has connected to is connected to an
OpenUAT instance.

2. “AUTHREQ UACAP-1.0 Ia Ca [PARAM P...]” (M1) is sent from A to B to transmit the
client identity (e.g. its IP or Bluetooth MAC address or a nonce acting as an ephemeral identifier
for a single interaction), its commitment and an optional parameter, which may be free-form and of
arbitrary length. Note that the client requests key exchange and verification using a named protocol
(currently UACAP-1.0) for interoperability with future versions.

3. “AUTHACK Ib Y ” (M2) is sent from B to A to respond with the server identity and the server (long-
lived or ephemeral) public DH key part.

4. “AUTHACK2 X” (M3) is sent from A to B to finish the DH key agreement with the client public key
part.

All variables are encoded depending on the chosen (in-band) RF channel. If it supports 8-bit data transmis-
sion (such as TCP sockets or Bluetooth RFCOMM), the variables are transmitted efficiently as byte arrays
in standard network byte order (i.e. big-endian) with a prepended single byte specifying the array length.
If the channel only supports character (e.g. ASCII) transmission (such as Jabber chat-messages as transport
medium), all variables are Hex-encoded and sent as ASCII strings with space as delimiter.

The following protocol messages are dependent on the chosen authentication option. For the input case:

1. “AUTHINPCOM Oa/b” (M5) provides the second commitment and is symmetrically sent by both A
and B. After correctly receiving these messages, both devices should exactly at this stage (not earlier
and not later) query for the user input that was previously provided to the other side.

2. “AUTHINPOPEN Ja/b” (M6) is also sent symmetrically by both A and B to open the previous com-
mitment and allow comparison of the user inputs.

For transfer and verification, other messages are transmitted over auxiliary channels and therefore with
different format. The encoding and specific protocol message depends on the respective channel.

4.3 Auxiliary Channels Implementation

Currently, OpenUAT implements several auxiliary channels:

• Ultrasound is used for a verification of Spatial References using the interlock* protocol both on RF
and ultrasonic channels [21].

• Motion is used to detect when two devices are shaken together, either in verification mode by ex-
changing accelerometer time series with an interlock* protocol or in input mode by creating keys
directly out of sensor time series [20]. Accelerometer data acquisition has been implemented for
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Table 1: OpenUAT: Currently implemented authentication methods

Channel/Mode Input Transfer Verify
Visual - Barcode transfer Compare sentences

Manual string comparison
Audio Audio transfer Compare melodies

Ultrasound
Motion ShakeMe ShakeMe
Keypad BEDA

Manual keypad entry

Spark Fun Electronics WiTilt sensors over Bluetooth, some on-main-board sensors (e.g. in Thinkpad
and Macbook laptops), and for Symbian S60 (through a Python module which communicates with
the Java MIDlet via a TCP socket) and some Windows Mobile phones (through a native C# imple-
mentation that communicates over TCP using the same format).

• 2D barcodes [23, 27] are used to display the out-of-band messages on any screen and capture them
with a mobile phone camera. QR codes are generated with an adapted embedded implementation,
while we make use of the Google ZXing library 5 for decoding. The QR code includes 7 bits of Oa

or Ob in hexadecimal notation.

• Audio as used in HAPADEP [28] is integrated into the OpenUAT code base. It was initially devel-
oped only for desktop systems, i.e. for Java 2 Standard Edition (J2SE) but subsequently ported to
J2ME/MIDP and restructured to integrate with UACAP. In transfer mode, Oa or Ob is encoded with
a “fast” codec and played as a wave file. The other device records the sound, decodes it, and verifies
that Oa = Ob. In verify mode, applying the “slow” codec results in a piano-like melody, which should
be more pleasant and easy to recognize by users.

• Manual keypad entry is used for “short” (confidential or non-confidential) input of Ra and Rb.

• Manual string comparison uses MADlib to create non-sensical sentences from the short messages
Oa or Ob which are then compared by the user [10].

• Synchronised button presses are used in an implementation of BEDA [29] as another form of com-
mon input.

In addition to the basic MIDP libraries, we have used several optional APIs: JSR 82 for Bluetooth
communication, JSR 75 for logging data to a file, JSR 135 (the Mobile Media API) for capturing audio and
video input and JSR 234 (the Advanced Multimedia Supplements) which adds basic playback functionality
for audio and video. We have successfully tested these channels on Nokia Series60 devices that implement
all these optional JSRs (e.g. N95, N82, 5500) and on appropriately equipped laptops.

To extend OpenUAT with a new auxiliary (OOB) channel, developers should implement the OOBChannel
interface and its public methods receive and transmit as well as the OOBMessageHandler inter-
face with its method handleOOBMessage. When a message is received, the OOBChannel notifies the
OOBMessageHandler, which then processes the message and completes the key verification step.

Full source code is available under the terms of the GNU Lesser General Public License (LGPL) at
http://www.openuat.org.

5ZXing http://code.google.com/p/zxing/

11

http://www.openuat.org


5 Evaluation

We perform a dual evaluation of our system. First, we present a security analysis of UACAP to show that it
prevents known attacks. Second, we conduct a user study using OpenUAT and several of its implemented
out-of-band channels to show in practice that the toolkit can be used with different, easily interchangeable
auxiliary channels in the same framework. Users’ perceptions of the toolkit and their preference for using
visual rather than audio channels provides interesting insights for application designers.

5.1 UACAP Security Analysis

In the following section, we analyze the security properties of UACAP. We prove its resistance to MITM,
online attacks. Brute-force, offline attacks carried out in a passive manner are mitigated through the prop-
erties of the Diffie-Hellman key exchange parameters (the attacker cannot compute K if it knows X and
Y but is not in possession of any of the secrets x and y. Furthermore, being based on previously verified
protocols, UACAP carries over their security properties.

Transfer Long The protocol starts with pre-authentication of both parties, through the exchange of com-
mitments on an authentic channel. To impersonate Alice (A), an attacker Eve would then have to find a
variable z, such that Com(X) = Com(Z), where Z =: gz . Only then could Eve pretend to be Alice
on the wireless, insecure channel and deliver M3 := (Z) to Bob (B) with successful comparison of com-
mitments in step 3.TL. However, due to the properties of the commitment function, which is implemented
as Com(x) := SHADBL-256(x) this is infeasible (the SHADBL-256 family of hash functions is currently
considered to be resistant to pre-image collisions). The same holds true for the other case (impersonating
the responder B).

The “pre-authentication” case was also previously described for SiB [23] and by Balfanz et al. [2].
Basically, because pre-authentication requires transfer of “long” messages that are effectively secure hashes
of public DH key parts, authentication is secure as long as those hashes remain so (that is, no second pre-
image can be found online during the protocol run).

Transfer Short Because the message transfer through the authentic channel is done at the end of the
protocol, to be successful, an attacker Eve would have to find a variable z and identity Ic, such that
HMACOKa(OIa) = HMACOKc(OIc), where OKc := (X‖Z). Note that the session key Ka is not
used during the verification phase. Ensuring that the correct variables X and Y have been transmitted is
sufficient to ensure device authentication. Our design is consistent with the MANA family of protocols,
which provide formal security proofs.

Basically, in comparison to the SAS [34] and DH-SC [4] protocols, MA-DH [17] and in extension
UACAP only differ by their message order. However, SAS and MA-DH have already been shown to belong
to the MANA IV family of protocols and therefore share their security proofs, while MA-DH is the optimal
variant in terms of number of messages [17]. The main feature that UACAP adapts from the MANA IV
family is the commitment prior to Diffie-Hellman key agreement to prevent brute-force attacks on short
authentication strings. This one-way commitment to (ephemeral or static) public Diffie-Hellman key parts
X and Y together with random nonces Ia and Ib used as session identifiers ensures that any MITM attack
must be performed online. An adversary is reduced to either attacking DH keys once the commitment
and key exchange has been completed (passive attack, which is currently assumed to be infeasible) or a
single, one-off chance for fabricating the DH key parts in such a way that the (short) auxiliary messages
will still match (active attack). Because of this protocol design element, all auxiliary messages besides the
pre-authentication case may be “short” in terms of brute-force key search. With only 20 Bits, an adversary
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A C B
Ia ∈ {0 . . . 2128 − 1} Ib ∈ {0 . . . 2128 − 1}
x ∈ {1 . . . q − 1}
X := gx

CX := Com(X) (Ia, CX )
-

x′ ∈ {1 . . . q − 1}
X′ := gx′

CX
′ := Com(X′) (Ia, CX

′)
-

y ∈ {1 . . . q − 1}
(Ib, Y ) Y := gy

�
y′ := A(Ia, Ib, Y, X′)

(Ib, Y ′) Y ′ := gy′

�
(X)
-

(X′)
- Com(X′) = CX

′)

OIa := (Ia|Ib) OIb := (Ia|Ib)
OKa := (X|Y ′) OKb := (X′|Y )
Oa := HMACOKa (OIa) Ob := HMACOKb

(OIb)

Figure 4: Wong-Stajano attack on MANA III is prevented in UACAP

is left with a single 2−20 chance to remain undetected during an online attack, which seems acceptable for
most scenarios.

Verify The Wong-Stajano attack on MANA III assumes that an attacker, after running a standard MITM
attack on the DH key exchange, can find a collision for the verification function mK(...) so that the random
values K1 and K2, which the attacker can choose freely, mask the differences in DH keys and lead to
the same verification codes [36]. When those verification functions are implemented using cryptographic
hashes, e.g. HMAC keyed by X , then this attack translates to finding an l-Bit collision in the hash function,
which can always (even assuming perfect hash functions) be performed as a brute-force search in O(2l)
(which is a much simpler attack than the one-off chance we would like to remain as the only online attack
vector). When transmitting the full hash output (as defined in MANA III), this seems infeasible.

However this attack does not work on UACAP by inheriting the principal security properties of MA-DH.
A man-in-the-middle C would, in the general UACAP protocol run – independently of how the auxiliary
message is transmitted –, perform the steps listed in Figure 4. The adversary function A must then generate
an x′ so that the l-Bit message oob suffers from a collision, i.e. H(Ia|Ib, X|Y ′) = H(Ia|Ib, X

′|Y ). At
this time, the adversary has access to the components Ia, Ib, X ′, Y , and attempts to generate Y ′ so that
the collision occurs. However, X has not yet been made public, and under the assumption that ephemeral
DH keys are used and thus X is random, this translates to a guessing game with a one-off chance of 2−l of
succeeding. The difference between MANA III (and the subsequently proposed Wong-Stajano variant) and
MA-DH (and MANA IV) is the initial commitment message, which prevents this attack.

Input Confidential and Non-confidential From the “VIC” protocol proposal that combines MANA with
SiB [27], BEDA [29] and Wong and Stajano’s MANA III variant [36], we adopt the second round of mutual
commitments (3.IN/IC Exchange hashes Q) for the “short input” case. Again, security arguments presented
for these protocols remain valid for UACAP because equivalent messages are used. In principle, the same
argument as for the first commitment (described above in the TL case) holds: an attacker would need to
guess the short inputs before they are revealed to successfully masquerade as A or B when the long nonces
Ja and Jb are revealed for comparison of Qa and Qb. By adding these nonces to the exchanged hashes, a
brute-force guessing game has the order of 2128 and only a one-off chance for guessing Ra and Rb (equal
for the IC case) remains when the attacker fabricates own nonces as an active MITM.

An interesting case arises when auxiliary channels are one-way, discussed in more detail in [27], [36],
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and [22]. Authentication can not be fully mutual in the sense of human verifiability, but when a remote
device can be trusted to correctly perform comparison of received auxiliary messages and report results of
this comparison, then mutual authentication on the protocol level is possible.

5.2 User Study

We used OpenUAT to conduct a first experiment towards comparing the usability of different authentication
methods. For this user study, we selected four different authentication methods: using the audio and visual
channels in transfer and verification modes. As a result, in transfer cases, the devices automatically decide
whether authentication was successful, while in the verify mode, this responsibility lies with the user. We
call the device initiating the communication C (client) and the device responding S (server).

User Study Setup

From the user perspective, the verification step following automatic key agreement (step 4 in UACAP)
proceeds as follows for the four different authentication methods. For Barcode transfer, S displays a
2D barcode. The user takes a picture of the barcode using C. C confirms whether the key was correctly
exchanged. In Audio transfer, S plays a (fast) tune. C records the tune and confirms whether the key
was correctly exchanged. To Compare melodies, C plays a melody. Subsequently, S plays a melody. The
user compares the melodies and, if they match, acknowledges that the pairing was successful. Finally, to
Compare sentences, both devices concurrently display a sentence. The user compares these sentences and,
if they match, acknowledges that the pairing was successful.

We recruited 20 participants for our user study, mainly a group of fairly young, well-educated and
technology-savvy participants (19 university students and researchers and one secretary). The demographics
and related background information of the participants are summarized in Table 2.

Table 2: Participant Profile

0% 25% 50% 75% 100%

Professional musician

Plays an instrument

Phone has BT/WiFi

Has a phone

Male

 

 Yes
No

Age

18-24 10 %
25-29 60 %
30-34 15 %
35-40 10 %
40 + 5 %

Education
Bachelor 30 %
Masters 65 %
PhD 5 %

Test Procedure

All experiments were conducted in normal office conditions, namely good lighting conditions and relatively
low noise level. Before starting, participants were asked to fill in the background questionnaire, which
served to learn about their experience with mobile devices and music related background and is summarized
in Table 2. Afterwards, participants were given a brief overview of the problem. We motivated the need for
secure device pairing and briefly presented the goals of our study. Although most of the users were already
familiar with the functionality of the devices used, we gave a brief overview of the basic operations needed
to interact with the device (e.g. how to navigate through the application menu, how to select options and to
take pictures).
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We have chosen Scenario 1 and 2 described in section 1, namely exchanging vCards and printing a doc-
ument, to motivate the participants to perform the tasks. To capture the QR code when pairing two phones (a
Nokia N82 and a Nokia N95 8GB), a focus lens was attached to the camera of the phone, compensating for
the lack of focus control in J2ME and consequently in the ZXing QR decoder. The printer was simulated by
a laptop. For each scenario, participants were asked to run the pairing application with all four authentica-
tion methods. No attack was simulated, i.e. verification sequences always matched. To reduce the learning
bias on test results, half of the users were first presented with Scenario 1 and the other half with Scenario 2.
User actions and their durations were automatically logged. Afterwards, each participant filled in a post-test
questionnaire form and was given some minutes of free discussion.

Results

Table 3 summarizes the logged data with average completion times between 13.2 seconds (comparing sen-
tences) and 37.7 s (barcode transfer from a phone display) and average number of tries until successful
pairing between 1 (comparing sentences) and 2.3 (barcode transfer). Figure 5 presents user’s perceived ease
of use and level of security, split further between short-lived and long-lived keys. Especially our direct
comparison of four authentication methods produced some interesting findings:

Table 3: Summary of the logged data for pairing 1) two phones(Ph-Ph) and 2) phone and laptop (Ph-Lap)

Method
Average Average Percentage

completion time (sec.) number of tries of failures
Ph-Ph Ph-Lap Ph-Ph Ph-Lap Ph-Ph Ph-Lap

Barcode transfer 37.7 (sd*=14.0) 34.1 (sd=15.3) 2.1 2.3 5% 15%
Audio transfer 30.7(sd=12.6) 31.9 (sd=14.2) 1.2 1.6 0% 5%
Compare melodies 19.6 (sd=8.3) 20.3 (sd=10.8) 1.3 1.3 20% 10%
Compare sentences 15.6 (sd=7.8) 13.2 (sd=4.5) 1.0 1.0 0% 0%
*sd = Estimated standard deviation
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Figure 5: Usability and security estimation by users
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Figure 6: User preference

Barcode transfer Results show that, even if using the visual channel in transfer mode resulted in the
longest completion time, it was by far the most preferred and most highly trusted pairing method. In fact,
users showed high acceptance even when decoding the QR code failed and they had to retry. After filling
in the post-test questionnaire, participants were presented with the live QR decoder application that is pre-
installed on some Nokia devices (but which could not be integrated with OpenUAT due do unavailability of
open APIs). Seeing how smooth and fast decoding could be made, this method appealed even more to users.
These results are in accordance with the background questionnaire which revealed that taking pictures is the
most widely performed task on mobile phones (by over 80% of the participants).

Audio transfer Using the audio channel in transfer mode is the only authentication method in which the
user did not have to assist the devices in any way. However, while overall study results acknowledged the
method as the easiest to perform (see Figure 5), other factors such as the social context made users prefer the
less obtrusive, seemingly more secure visual channel. Several users suggested replacing audio by ultrasound
transfer (already implemented in OpenUAT, but inherently requiring additional hardware and visualization).
Another interesting result is the perceived duration time of the pairing process. Even though the method
using the audio channel takes less time to complete – in average 15 s less than the visual channel – some
users were bothered by the long time needed to decode the audio message (during which they did not have
to conduct any task). On average, decoding the audio message took 16 s for phone to phone and 13 s for
laptop to phone (due to better sound quality on the laptop).

Comparing melodies This is the method that users found the most difficult and which they least trusted.
35% of the participants have been playing at least one instrument for 3 to 27 years, with an average of
12 years. Unexpectedly, people with advanced music experience did not find the melodies easier to compare
than people that do not play any instrument. On the contrary, these people were more sensitive to sound
differences between devices (even the same tune will sound different when played by different devices) and
trusted this authentication method less. On average, the tunes were replayed 1.3 times. Although there was
no attacker, in 10% and 20% of the trials, respectively, participants failed to recognize the tune as being the
same. The general impression was that the sequences were too long. A melody lasted 4 to 5 s and played 7
to 9 notes.

Comparing sentences This was generally considered a secure method. It had the fastest completion
time (13 and 15 s), but required significant user attention. Some participants were bothered by the lack of
semantics of the sentences (e.g. "DURWARD FOOLHARDILY DISTORT-ed to BRANCH on a COMMIT-
TEE"). Because sentences are automatically constructed from a cryptographic token, they do not have any
meaning.
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6 Conclusions

The problem of authenticating spontaneous interactions has seen significant interest in recent years due to
its wide applicability in current and future application scenarios. Many approaches have been suggested
independently, and only rarely distributed with an open, reproducible implementation. In this paper, we
contribute UACAP as a new, unified cryptographic protocol for device authentication to use with arbitrary
auxiliary channels. We also contribute OpenUAT as an open source, publicly available toolkit for authenti-
cation and implement some intuitive authentication methods in a common library based on UACAP. Video,
audio, ultrasound, motion, keypad input, and sentence comparison are already available for application de-
velopers and are easily comparable and interchangeable. Further auxiliary channel implementations are
currently being integrated.

It seems important to provide a vast library of different methods — they should be chosen to best suit
the envisaged application, and direct comparability in rapid prototyping will assist application designers in
doing so. By providing OpenUAT as a toolkit for system builders, we hope to both foster future research
and to shorten the gap between research prototypes and real-world applications.
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