Towards usable authentication on mobile phones: An evaluation of speaker and face recognition on off-the-shelf handsets

IWSSI/SPMU 2012 at Pervasive 2012
18. June 2012, Newcastle, UK

Rene Mayrhofer, Thomas Kaiser
University of Applied Sciences Upper Austria
rene.mayrhofer@fh-hagenberg.at
Disclaimer

This slide set is only meant for visual support during the presentation, and should not be used for reference purposes before or after the presentation.

For reference, please read the paper, not the presentation.

http://www.wired.com/wired/archive/11.09/ppt2.html
User authentication on mobile phones...

... is difficult because it should be:

- secure
- quick
- unobtrusive
- robust
- fun
- and much better than the one published by <the other company> a few weeks ago.
A really new idea: why not try biometrics?
Results for speaker recognition

<table>
<thead>
<tr>
<th></th>
<th>30.6</th>
<th>35.8</th>
<th>40.5</th>
<th>44.8</th>
<th>37.0</th>
<th>41.8</th>
<th>38.5</th>
<th>41.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.9</td>
<td>30.0</td>
<td>39.8</td>
<td>55.5</td>
<td>33.9</td>
<td>34.2</td>
<td>34.5</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>40.7</td>
<td>39.2</td>
<td>27.8</td>
<td>37.0</td>
<td>41.3</td>
<td>43.5</td>
<td>37.5</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>44.6</td>
<td>52.3</td>
<td>38.5</td>
<td>31.2</td>
<td>56.4</td>
<td>64.9</td>
<td>57.7</td>
<td>61.8</td>
<td></td>
</tr>
<tr>
<td>32.3</td>
<td>29.9</td>
<td>36.1</td>
<td>54.3</td>
<td>28.6</td>
<td>30.9</td>
<td>30.1</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>38.5</td>
<td>33.6</td>
<td>39.6</td>
<td>57.7</td>
<td>34.0</td>
<td>31.1</td>
<td>34.2</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>32.3</td>
<td>35.8</td>
<td>51.1</td>
<td>34.0</td>
<td>34.1</td>
<td>30.9</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>33.8</td>
<td>39.3</td>
<td>54.6</td>
<td>32.9</td>
<td>35.3</td>
<td>34.6</td>
<td>28.0</td>
<td></td>
</tr>
</tbody>
</table>

Features: Mel frequency cepstral coefficients (MFCC)

Classifier: simple Vector Quantization (VQ) with k-means clustering for training

Hardware for evaluation: HTC Desire HD, 8kHz, 8 bit quantization

Training set: 60 seconds with same text for all speakers

Testing set: 15 seconds with different text for each speaker

Details: in the paper
Face recognition optimized for phones

Results with ORL database

- **Motivation**
- **Speaker recognition**
- **Face recognition**

<table>
<thead>
<tr>
<th>Num. training img.</th>
<th>Recognition rate %</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>68</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>200</td>
<td>95</td>
</tr>
<tr>
<td>400</td>
<td>95</td>
</tr>
</tbody>
</table>

- **Comparison**
 - **Eigenfaces**
 - **DCT-based**

2012-06-18 Face and Speaker Recognition on Android Rene Mayrhofer 7
Results with Caltech database

<table>
<thead>
<tr>
<th>Num. training img.</th>
<th>Eigenfaces</th>
<th>DCT-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>36</td>
<td>59</td>
</tr>
<tr>
<td>64</td>
<td>73</td>
<td>91</td>
</tr>
<tr>
<td>233</td>
<td>82</td>
<td>96</td>
</tr>
<tr>
<td>259</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
There can be more then one!

Biometric authentication on mobile phones is **hard**

Why not use an arbitrary number of them together (e.g. gait recognition), driven by the application needs?

Framework for multi-method authentication and implementations for speaker and face recognition on Android online at https://gitorious.org/android-user-auth
Thank you for your attention!

Publications: http://www.mayrhofer.eu.org/publications
Slides: http://www.mayrhofer.eu.org/presentations
Email: rene.mayrhofer@fh-hagenberg.at
 rene@mayrhofer.eu.org

OpenPGP keys: 0x249BC034 (new) and 0xC3C24BDE (old)
717A 033B BB45 A2B3 28CF B84B A1E5 2A7E 249B C034
7FE4 0DB5 61EC C645 B2F1 C847 ABB4 8F0D C3C2 4BDE