
2011-06-12 Android Exploit Framework

1

A framework for on-device
privilege escalation exploit

execution on Android
IWSSI/SPMU 2011 at Pervasive 2011
12. June 2011, San Francisco, CA, US

Sebastian Höbarth, Rene Mayrhofer
Fachhochschule Hagenberg, AT
rene.mayrhofer@fh-hagenberg.at

2011-06-12 Android Exploit Framework 2Rene Mayrhofer

Comparing mobile platforms

Motivation
Android Security

Framework

Android iOS Blackberry Symbian

Restricted to
App Store

no yes no no

Sandbox for
applications

yes some
(Safari)

no
(unknown)

no

Signed
applications

yes yes yes yes

Capabilities for
applications

yes
(all-or-nothing)

no yes
(configurable)

yes
(configurable)

Garbage
collection

yes
(Java)

no
(Objective C)

yes
(Java)

no
(C++)

Exploit
prevention

no NX
no ASLR

NX stack+heap
no ASLR

unknown no NX
no ASLR

On-device
encryption

no yes, but
problematic

yes no

2011-06-12 Android Exploit Framework 3Rene Mayrhofer

Comparing exploit prevention techniques

Motivation
Android Security

Framework

Table by Nicolas Economou and Alfredo Ortega, Presentation “Smartphone (in)security” at CanSecWest 2009

2011-06-12 Android Exploit Framework 4Rene Mayrhofer

iPhone vs. Android security concepts

● Closed eco-system

● All applications need to go through
Apple Store, checked by Apple

unless device has been
“jailbroken”...

● Sandboxing restricted to few
applications (e.g. MobileSafari)

● Some exploit protection measures

● No further security measures

– Data Execution Prevention
(DEP) using ARM XN
feature

– but no ASLR in kernel

● Open eco-system

● Arbitrary applications can be installed by
the user (may need to enable “USB
debugging for installation from PC or
download on-device and install)

● All applications are sandboxed

● No further security measures

– no ASLR, no DEP

– no on-device encryption

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 5Rene Mayrhofer

Android Architecture

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 6Rene Mayrhofer

Android Security Architecture

Applications must be signed for installation
● may be self-signed by the developer, therefore no requirement for centralized application

Q/A or control
● signature allows non-repudiability (if the public key/certificate is known)
● signature by same private key allows applications to share data and files
● automatic application updates possible when signed by same private key

Upon installation, the package manager creates a dynamic user ID for each
application ⇒ Application sandbox

● all application files and processes are restricted to this UID
● enforced by Linux kernel and therefore same restrictions for all code (Java + native)
● by default, even the user and debugging shells are restricted to a special UID (SHELL)
● permissions granted at installation time allow to call services outside the application

sandbox

“rooting” to gain “root” access (super user / system level access on UNIX without
further restrictions)

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 7Rene Mayrhofer

Motivation
Android Security

Framework

What can be done after rooting?

Development

● Installing custom root, recovery, and system images

● [on devices without NAND lock] changing files on the /system partition

General

● Reading all files on /system and /data partitions (including centralized system databases,
e.g. accounts)

● Changing kernel settings, e.g. CPU over-/underclocking, IPv6 address privacy

● custom routing, WiFi/3G connection sharing on devices that do not support “tethering” out
of the box or have it disabled by the manufacturer/carrier

● Installing/using applications that require root access, e.g. Backup/restore, OpenVPN,
Webkey, SSH daemon, etc.

2011-06-12 Android Exploit Framework 8Rene Mayrhofer

Rooting Overview

(1)Achieve temporary root privileges

● on “developer” devices (Google ADP1 / G1, Nexus One, Nexus S) simply with

– fastboot oem unlock

● booting into recovery mode on devices that allow this without restriction

● exploiting an implementation bug

– either during normal system run-time
– or in the boot loader code to get into recovery mode (see above)

e.g. flawed signature checking allows booting custom recovery image and
from within that running image, flashing a new system image

(2)Achieve permanent root privileges

● by flashing a new system image with pre-installed binaries for root access

● by installing a /system/(x)bin/su binary with “setuid” Bit set and the
“SuperUser” application that will ask the user on each (first-time) access

● by modifying the root image, e.g. to set the global property ro.secure=0

(3)Secure system against abuse by other applications

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 9Rene Mayrhofer

Details: Linux kernel

● “root” is the super-user, equivalent to system-level access

● kernel implements DAC (Discretionary Access Control) on filesystem (includes kernel
virtual files, e.g. /proc, /sys, etc.)

● optional MAC (Mandatory Access Control) schemes available in upstream kernel

– SELinux (NSA, flexible, comprehensive, but complex)

– SMACK (simpler, path-based, used on MeeGo)

– TOMOYO (path-based, more flexible than AppArmor)

– AppArmor (simpler, path-based, used on Novell and Ubuntu servers)

● could all be used to further restrict root user, often based on application context

But none of them used in Android at this time!

● goal is therefore to achieve root privileges

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 10Rene Mayrhofer

Details: filesystem ACLs

● read, write, execute bits for owning user, group, and all others

● additional bits available, e.g. setuid and setgid

– ⇒ binary called with privileges of owner, not privileges of caller

– ⇒ typical combination is a file owned by root with setuid Bit set

● setuid binaries used on many UNIX/Linux systems to allow normal users to perform
administrative tasks (e.g. passwd) or for arbitrary code elevation (e.g. su, sudo)

● for controlled root access, simple and effective method on Android

– no changes to any existing system binaries

– only need one additional binary installed with setuid Bit set

– typically /system/(x)bin/su as on standard UNIX systems, but with Android-specific
GUI to ask user for permission on root access

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 11Rene Mayrhofer

Android Debug Bridge (adb)

● Must be enabled by user (USB Debugging)

– but then available over USB, WiFi, or locally on device

● Supports debugging, file transfer, package installation, reboot control, etc.

● Normally runs as user SHELL (uid 2000)

● Can be restarted as user root (uid 0)

– with global property ro.secure=0

– then can call adb root to restart

– or use one of the known exploits to force adbd to retain root privileges

– will then support e.g. adb remount to remount /system with read-
write option

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 12Rene Mayrhofer

Devices with NAND-Lock

● Some HTC devices have a “NAND lock” implemented in their
kernel and boot loader

– also called “S-On” in contrast to “S-Off”
(no additional protection)

● Boot loader sets global flag “S-On” for booting into Android and
“S-Off” for booting into recovery mode

● NAND access is moderated by baseband (radio) processor, application processor has to go
through it

● Radio firmware prevents write access to system (and sometimes recovery) NAND
partitions even with root privileges and when /system has been re-mounted for read-
write access

● Currently known devices with NAND Lock: all HTC Desire and EVO variants

● Other devices “only” have a boot loader that verifies signatures before installing updates
for recovery and system and before booting a kernel (e.g. Motorola Milestone)

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 13Rene Mayrhofer

Rooting: example exploits

Exploits used for gaining temporary root privileges

● Android <= 1.6: missing input sanitization in udev firmware loading
(CVE-2009-1185)

● Android <= 2.2: remapping shared memory (and system properties)

● Android <= 2.2: overflowing limit of processes
for restricted SHELL user (rageagainstthecage)

● Android <= 2.3: restricting access to shared memory
(psneuter)

http://intrepidusgroup.com/insight/2010/09/android-root-source-code-looking-at-the-c-skills/

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 14Rene Mayrhofer

Framework steps for permanent rooting

Independent of specific exploit, as long as running code has (temporary)
root privileges

(1)Remount /system for write access

(2)Install new binary with setuid Bit set ⇒ e.g. “su” binary with SuperUser
companion application

• Exploit framework binary installs itself to /system/bin with setuid

• Alternative: set setuid Bit on existing binary /system/bin/sh, possible
due to bugs in YAFFS2 code in combination with NAND lock

(3)Remove ACL restrictions from accounts and settings SQlite database files

(4)Binary with setuid Bit is called at any future time when root privileges are
required ⇒ permanent privilege escalation

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 15Rene Mayrhofer

Future work: working around NAND lock

Automate process of creating custom NAND images

(1)Extract boot or recovery NAND partition to temporary files

(2)For boot partition:

a)extract initramfs image

b)modify main boot script to set ro.secure=0

c)repack initramfs image

(3)Write boot partition to NAND

Motivation
Android Security

Framework

2011-06-12 Android Exploit Framework 16Rene Mayrhofer

Conclusions

Android security measures are not sufficient

● Recommendation 1: ASLR, NX exploit prevention; audit system level code

● Recommendation 2: more fine-grained application permissions (e.g. Internet)

● Recommendation 3: allow user to choose which permissions to grant each
application instead of all-or-nothing at installation time

● Recommendation 4: MAC (kernel policies) in addition to DAC (filesystem ACLs)
at least for critical binaries, better for application sandboxing (cf. SELinux
application sandbox in current Fedora distribution)

● Framework + example exploits source online at
http://openuat.org/android-exploit-framework

2011-06-12 Android Exploit Framework

17

“Portability is for people who cannot write
new programs.”

Linus Torvalds, 1992-01-29, comp.os.minix

Linux is currently one of the most portable
operating system kernels...

2011-06-12 Android Exploit Framework

18

Thank you for your attention!

Slides: http://www.mayrhofer.eu.org/presentations
Later questions: rene.mayrhofer@fh-hagenberg.at

rene@mayrhofer.eu.org

OpenPGP keys: 0x249BC034 (new) and 0xC3C24BDE (old)
717A 033B BB45 A2B3 28CF B84B A1E5 2A7E 249B C034
7FE4 0DB5 61EC C645 B2F1 C847 ABB4 8F0D C3C2 4BDE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

