
Introduction to IT Security 390

Chapter 8

Code Security

Introduction to IT Security 391

Software security is hard

■ One of the main problems in software engineering at the moment
□ often poor programming because of lacking education/awareness in

developers and bad tooling (languages/platforms making mistakes too
easy to make and impact of mistakes too severe)

□ often due to project deadlines

■ Unclear how to practically write correct and secure code, even
with increased project resources
□ formal validation is extremely costly, not clear how to do on complex

code bases

■ Therefore many security relevant errors in currently deployed code

■ Classification of security problems: “Common Weakness
Enumeration” (CWE) at https://cwe.mitre.org/

■ Publicly known software vulnerabilities: “Common Vulnerabilities
and Exposures” (CVE) at https://cve.mitre.org/

https://cwe.mitre.org/
https://cve.mitre.org/

Introduction to IT Security 392

CWE/SANS Top 25 most dangerous
software errors

Insecure Interaction Between Components
■ CWE-89 Improper Neutralization of Special Elements used in

an SQL Command ('SQL Injection')

■ CWE-78 Improper Neutralization of Special Elements used in
an OS Command ('OS Command Injection')

■ CWE-79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

■ CWE-434 Unrestricted Upload of File with Dangerous Type

■ CWE-352 Cross-Site Request Forgery (CSRF)

■ CWE-601 URL Redirection to Untrusted Site ('Open Redirect')

http://www.sans.org/top25-software-errors/

http://www.sans.org/top25-software-errors/

Introduction to IT Security 393

CWE/SANS Top 25 most dangerous
software errors

Risky Resource Management
■ CWE-120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

■ CWE-22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

■ CWE-494 Download of Code Without Integrity Check

■ CWE-829 Inclusion of Functionality from Untrusted Control
Sphere

■ CWE-676 Use of Potentially Dangerous Function

■ CWE-131 Incorrect Calculation of Buffer Size

■ CWE-134 Uncontrolled Format String

■ CWE-190 Integer Overflow or Wraparound
http://www.sans.org/top25-software-errors/

http://www.sans.org/top25-software-errors/

Introduction to IT Security 394

CWE/SANS Top 25 most dangerous
software errors

Porous Defenses
■ CWE-306 Missing Authentication for Critical Function

■ CWE-862 Missing Authorization

■ CWE-798 Use of Hard-coded Credentials

■ CWE-311 Missing Encryption of Sensitive Data

■ CWE-807 Reliance on Untrusted Inputs in a Security Decision

■ CWE-250 Execution with Unnecessary Privileges

■ CWE-863 Incorrect Authorization

■ CWE-732 Incorrect Permission Assignment for Critical Resource

■ CWE-327 Use of a Broken or Risky Cryptographic Algorithm

■ CWE-307 Improper Restriction of Excessive Authentication Attempts

■ CWE-759 Use of a One-Way Hash without a Salt
http://www.sans.org/top25-software-errors/

http://www.sans.org/top25-software-errors/

Introduction to IT Security 395

MicroFocus
2018 Application Security Research Report

Introduction to IT Security 396

Buffer overflow
■ A very common attack mechanism

□ first widely used by the Morris Worm in 1988

■ Defined in NIST glossary as
“A condition at an interface under which more input can be placed into
a buffer or data holding area than the capacity allocated, overwriting
other information. Attackers exploit such a condition to crash a system
or to insert specially crafted code that allows them to gain control of the
system.”

■ Prevention techniques known
□ easiest: use memory safe languages with automatic input validation!
□ OS, library, and compiler can perform automatic mitigation

■ Still of major concern
□ legacy of buggy code in widely deployed operating systems and

applications
□ continued careless programming practices by programmers

Introduction to IT Security 397

Buffer overflow basics
■ Programming error when a process attempts to store data beyond the

limits of a fixed-sized buffer

■ Overwrites adjacent memory locations
□ locations could hold other program variables, parameters, or program

control flow data

■ Buffer could be located on the stack, in the heap, or in the data section of
the process

■ To exploit a buffer overflow an attacker needs:
□ to identify a buffer overflow vulnerability in some program that can be

triggered using externally sourced data under the attacker’s control
□ to understand how that buffer is stored in memory and determine

potential for corruption

■ Identifying vulnerable programs can be done by:
□ inspection of program source
□ tracing the execution of programs as they process oversized input
□ using tools such as fuzzing to automatically identify potentially

vulnerable programs

Introduction to IT Security 398

Buffer overflow example: code
int main(int argc, char *argv[]) {
 int valid = FALSE;
 char str1[8];
 char str2[8]; // because of stack order, str2 will be on lower addresses than str1

 strcpy(str1, "START");
 gets(str2);
 if (strncmp(str1, str2, 8) == 0)
 valid = TRUE;
 printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid);
}

(a) Basic buffer overflow C code

$ cc -fno-stack-protector -g -o buffer1 buffer1.c
$./buffer1
START
buffer1: str1(START), str2(START), valid(1)
$./buffer1
EVILINPUTVALUE
buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)
$./buffer1
BADINPUTBADINPUT
buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

(b) Basic buffer overflow example runs

Introduction to IT Security 399

Buffer overflow example: stack values

Introduction to IT Security 400

Stack buffer overflows

■ Occur when buffer is located on stack
□ also referred to as stack smashing
□ used by Morris Worm
□ exploits included an unchecked buffer

overflow

■ Are still being widely exploited

■ Stack frame
□ when one function calls another it

needs somewhere to save the return
address

□ also needs locations to save the
parameters to be passed in to the
called function and to possibly save
register values

Introduction to IT Security 401

Common unsafe C standard library
routines

Introduction to IT Security 402

Buffer overflow example: code

$ cc -g -o buffer1 buffer1.c
buffer1.c: In function ‘main’:
buffer1.c:10:5: warning: implicit declaration of function ‘gets’; did you mean ‘fgets’?
[-Wimplicit-function-declaration]
 10 | gets(str2);
 | ^~~~
 | fgets
/usr/bin/ld: /tmp/ccQdK5WB.o: in function `main':
buffer1.c:10: Warning: the `gets' function is dangerous and should not be used.

$./buffer1
BADINPUTBADINPUT
buffer1: str1(START), str2(BADINPUTBADINPUT), valid(0)
*** stack smashing detected ***: terminated
[1] 1265340 abort (core dumped) ./buffer1

(c) Basic buffer overflow example runs with modern default compiler options

Introduction to IT Security 403

Shellcode

■ Code supplied by attacker
□ often saved in buffer being overflowed
□ traditionally transferred control to a user command-line interpreter

(shell)

■ Machine code
□ specific to processor and operating system
□ traditionally needed good assembly language skills to create
□ more recently a number of sites and tools have been developed that

automate this process

■ Metasploit project
□ provides useful information to people who perform penetration, IDS

signature development, and exploit research
□ see https://www.metasploit.com/

https://www.metasploit.com/

Introduction to IT Security 404

Compile-time defenses:
Programming language

■ Use a modern high-level language
□ not vulnerable to buffer overflow attacks (but beware of calling native

code libraries!)
□ compiler enforces range checks and permissible operations on

variables (with some performance penalty)
□ e.g. Rust, Java/Kotlin/Scala, Go, C#/F#, Haskell, ...

■ Scripting languages are typically not susceptible to buffer overflow
attacks
□ however, dynamic typing has other problems…
□ e.g. Python, Javascript, Perl, Ruby, PHP, …

● not in language, but runtime, function libraries, etc. may have (had) problems
(=bugs)

Introduction to IT Security 405

Compile-time defenses:
Safe coding techniques

■ C designers placed much more emphasis on space efficiency and
performance considerations than on type safety
□ assumed programmers would exercise due care in writing code

■ Programmers need to inspect the code and rewrite any unsafe
coding
□ an example of this is the OpenBSD project
□ OpenBSD programmers have audited the existing code base, including

the operating system, standard libraries, and common utilities
□ this has resulted in what is widely regarded as one of the safest

operating systems (among those written in C/C++) in active use

Introduction to IT Security 406

Compile-time defenses:
Language extensions / libs

■ Handling dynamically allocated memory is more problematic
because the size information is not available at compile time
□ requires an extension and the use of library routines

● programs and libraries need to be recompiled
● likely to have problems with third-party applications

■ Concern with C is use of unsafe standard library routines
□ one approach has been to replace these with safer variants

● libsafe is an example
● library is implemented as a dynamic library arranged to load before the

existing standard libraries

Introduction to IT Security 407

Compile-time defenses:
Stack protection

■ Add function entry and exit code to check stack for signs of
corruption

■ Use random canary
□ value needs to be unpredictable
□ should be different on different systems

■ StackGuard/ProPolice and Return Address Defender (RAD)
□ GCC extensions that include additional function entry and exit code

● function entry writes a copy of the return address to a safe region of memory
● function exit code checks the return address in the stack frame against the

saved copy
● if change is found, aborts the program

□ enable with -fstack-protector-strong or -fstack-protector-all

■ AddressSanitizer in Clang/LLVM and newer GCC
□ also detects other errors, e.g. use-after-free → turn on by default!
□ enable with -fsanitize=address and -fsanitize=bounds

Introduction to IT Security 408

Buffer overflow example: code

$ cc -fsanitize=address -fsanitize=bounds -fstack-protector-all -g -o buffer1 buffer1.c
<same compile-time warnings as before>
$./buffer1
BADINPUTBADINPUT
===
==1270147==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffd11a17cf8 at pc
0x7f6139cdfdbb bp 0x7ffd11a17b40 sp 0x7ffd11a172b8
READ of size 17 at 0x7ffd11a17cf8 thread T0
 #0 0x7f6139cdfdba (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x9cdba)
 #1 0x7f6139ce0ddc in __interceptor_vprintf (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x9dddc)
 #2 0x7f6139ce0ed6 in printf (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x9ded6)
 #3 0x5567e6afc38e in main buffer1.c:13
 #4 0x7f613910b0b2 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x270b2)
 #5 0x5567e6afc1ad in _start (buffer1+0x11ad)

Address 0x7ffd11a17cf8 is located in stack of thread T0 at offset 72 in frame
 #0 0x5567e6afc278 in main buffer1.c:4

 This frame has 2 object(s):
 [32, 40) 'str1' (line 6)
 [64, 72) 'str2' (line 7) <== Memory access at offset 72 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism,
swapcontext or vfork (longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x9cdba)
...

Introduction to IT Security 409

Run-time defenses: Data Execution
Prevention (DEP)

■ Prevent execution in data memory pages

■ Modes
□ hardware: CPU checks NX/XD/XN bit of page

● blocks execution of code in page
● AMD64 (Athlon 64, Opteron), Intel from Pentium 4, modern ARM CPUs

□ software

■ OS support
□ Linux (2000), Windows XP SP2 (2004), Mac OS X (2006), ...

■ Limitations
□ no protection against “return to libc” attack
□ may break legitimate uses (JIT-Compiler)
□ program compatibility

Introduction to IT Security 410

Run-time defenses: Data Execution
Prevention (DEP)

■ POSIX
□ page access permissions
□ PROT_READ, PROT_WRITE, PROT_EXEC

■ OpenBSD / Mac OS X
□ W^X: Write XOR Execute
□ hardware and emulation

■ Linux
□ ExecShield (patch)

● hardware and emulation
● ASCII armor region: uses addresses from 0 to 0x01010100

□ PaX (patch)
● hardware and emulation
● ASLR (see next slide)

Introduction to IT Security 411

Run-time defenses:
Address space randomization

Address space layout randomization (ASLR)
■ Manipulate location of key data structures

□ stack, heap, global data
□ using random shift for each process
□ large address range (64 bit) on modern systems means wasting some

has negligible impact
□ but: on 32 bit architectures not enough entropy for sufficient protection

against brute force address tries

■ Randomize location of heap buffers

■ Random location of standard library functions

■ Implementations
□ virtual memory, PIE (position-independent executable)
□ Linux (getting stronger over time, including KASLR for kernel memory)
□ Windows (since Vista), Mac OS X (weak), iOS

Introduction to IT Security 412

Run-time defenses:
Guard pages

■ Place guard pages between critical regions of memory
□ flagged in MMU as illegal addresses
□ any attempted access aborts process
□ NOP slides: Lots of No-Op commands with actual code at end. If you

land somewhere, you will execute the code → likely to hit guard page
● specific attacks may only be 100 bytes long → guard page not very useful

■ Further extension places guard pages between stack frames and
heap buffers
□ cost in execution time to support the large number of page mappings

necessary

■ Beginning to be supported by hardware, e.g. ARM Memory
Tagging (MTE)

Introduction to IT Security 413

Variants of buffer overflow attacks
■ Replacement stack frame:

□ putting “fake” new stack frame into overwritten buffer and overwriting
frame pointer address

□ dummy stack frame contains new return address to shellcode
□ function returns normally (original return address is not changed), but

then calling function uses dummy stack frame and jumps to shellcode
when itself returns

□ may allow circumventing run-time checks on return code
□ variant: off-by-one attack

■ Return to system call: see next slide

■ Heap overflow: even more indirect to work around stack
protections

■ Global data area overflow: see next slides

■ Others

Introduction to IT Security 414

Return to system call
Stack overflow variant replaces
return address with standard
library function

■ Response to non-executable
stack defenses

■ Attacker constructs suitable
parameters on stack above
return address

■ Function returns and library
function executes

■ Attacker may need exact
buffer address

■ Can even chain two or more
library calls

Defenses

■ Any stack protection
mechanisms to detect
modifications to the stack
frame or return address by
function exit code

■ Use non-executable stacks

■ Randomization of the stack in
memory and of system
libraries

Introduction to IT Security 415

Global data overflow

Can attack buffer located in global
data

■ May be located above
program code

■ If it has function pointer and
vulnerable buffer

■ Or adjacent process
management tables

■ Aim to overwrite function
pointer later called

Defenses

■ Non executable or random
global data region

■ Move function pointers

■ Guard pages

Introduction to IT Security 416

Software security, quality, and reliability

Software quality and reliability
■ Concerned with the accidental

failure of program as a result
of some theoretically random,
unanticipated input, system
interaction, or use of incorrect
code

■ Improve using structured
design and testing to identify
and eliminate as many bugs
as possible from a program

■ Concern is not how many
bugs, but how often they are
triggered

Software security
■ Attacker chooses probability

distribution, specifically
targeting bugs that result in a
failure that can be exploited
by the attacker

■ Triggered by inputs that differ
dramatically from what is
usually expected

■ Unlikely to be identified by
common testing approaches

■ Software should only do
what it is intended to, do it
timely, and nothing else

Introduction to IT Security 417

Defensive programming
Problem with current practices
■ Programmers often make

assumptions about the type of
inputs a program will receive
and the environment it
executes in
□ assumptions need to be

validated by the program and
all potential failures handled
gracefully and safely

■ Requires a changed mindset
to traditional programming
practices
□ programmers have to

understand how failures can
occur and the steps needed to
reduce the chance of them
occurring in their programs

Defensive programming
■ A form of defensive design to

ensure continued function of
software despite unforeseen
usage

■ Requires attention to all
aspects of program execution,
environment, and type of data
it processes

■ Also called secure
programming

■ Assume nothing, check all
potential errors
□ programmer never assumes a

particular function call or library
will work as advertised so
handles it in the code

Introduction to IT Security 418

Security by design
■ Security and reliability are common design goals in most

engineering disciplines

■ Software development not as mature
□ much higher failure levels tolerated

■ Despite having a number of software development and quality
standards
□ main focus is general development lifecycle
□ increasingly identify security as a key goal

■ Don't:
□ trust user or network input
□ trust external systems
□ trust infrastructure
□ mix code and data
□ store any data you don't need (temporarily or permanently)

Introduction to IT Security 419

Root/admin privileges in software

■ Programs with root / administrator privileges are a major target of
attackers
□ they provide highest levels of system access and control
□ are needed to manage access to protected system resources

■ Often privilege is only needed at start (e.g. to bind to privileged
network port or open key files)
□ can then drop privileges and run as normal/limited user

■ Good design partitions complex programs in smaller modules with
needed privileges → isolation/compartmentalization design
□ provides a greater degree of isolation between the components
□ reduces the consequences of a security breach in one component
□ easier to test and verify

antivirus and other
security add-ons
often run as admin

Introduction to IT Security 420

Input size validation

■ Programmers often make assumptions about the maximum
expected size of input
□ allocated buffer size is not confirmed
□ resulting in buffer overflow

■ Many other input parsing problems in addition to (trivial) size
overflow issues exist, especially with complex formats

■ Testing may not identify vulnerability
□ test inputs are unlikely to include large enough and/or complex enough

inputs to trigger the overflow / parsing error
□ use fuzzing!

■ Safe coding treats all input as dangerous

Introduction to IT Security 421

Interpretation of program input

■ Program input may be binary or text
□ binary interpretation depends on encoding and is usually application

specific

■ There is an increasing variety of character sets being used
□ care is needed to identify just which set is being used and what

characters are being read

■ Failure to validate may result in an exploitable vulnerability

Introduction to IT Security 422

Injection attacks
… are flaws relating to invalid handling of input data, specifically when
program input data can accidentally or deliberately influence the flow of
execution of the program

■ Very problematic for interpreted scripting languages (e.g. PHP) where
direct code injection attack is possible

■ On client side one of the biggest attack vectors (e.g. PDF)

■ Common type of server side attack: SQL injection attack
□ user supplied input is used to construct a SQL request to retrieve information

from a database
□ vulnerability is similar to command injection

● difference is that SQL metacharacters are used rather than shell metacharacters
□ to prevent this type of attack the input must be validated before use

■ Common type of web attack: cross site scripting (XSS) attack
□ user supplied content (e.g. from cookie) included in web page as displayed

to other users and executed in their browsers

Introduction to IT Security 423

Race conditions
■ Without synchronization of accesses it is possible that values may

be corrupted or changes lost due to overlapping access, use, and
replacement of shared values

■ Arise when writing concurrent code whose solution requires the
correct selection and use of appropriate synchronization primitives

■ Deadlock
□ processes or threads wait on a resource held by the other
□ one or more programs has to be terminated

■ In practice, often a problem with temporary files
□ application (tries to) create temporary file (possibly with root access)
□ attacker creates the file, but with different permissions/ownership/link

target
□ application then writes into the file created by attacker

→ possibly writes into different target with elevated privileges

Introduction to IT Security 424

Preventing race conditions

… is hard (compare to multi-threaded programming issues)

■ Need suitable synchronization mechanisms
□ most common technique is to acquire a lock on the shared file

■ Lockfile
□ process must create and own the lockfile in order to gain access to the

shared resource
□ concerns

● if a program chooses to ignore the existence of the lockfile and access the
shared resource the system will not prevent this

● all programs using this form of synchronization must cooperate
● implementation

Introduction to IT Security 425

Safe temporary files

■ Many programs use temporary files

■ Often in common, shared system area

■ Must be unique, not accessed by others

■ Commonly create name using process ID
□ unique, but predictable
□ attacker might guess and attempt to create own file between program

checking and creating

■ Secure temporary file creation and use requires the use of random
names
□ better: use OS function to create unique randomly named file

Introduction to IT Security 426

Input fuzzing
■ Developed by Barton Miller at the University of Wisconsin Madison

in 1989

■ Software testing technique that uses randomly generated data as
inputs to a program
□ range of inputs is very large
□ intent is to determine if the program or function correctly handles

abnormal inputs
□ simple, free of assumptions, cheap
□ assists with reliability as well as security

■ Can also use templates to generate classes of known problem
inputs
□ disadvantage is that bugs triggered by other forms of input would be

missed
□ combination of approaches is needed for reasonably comprehensive

coverage of the inputs
□ difficulty: how to detect problem from output

Introduction to IT Security 427

Handling program output

■ Final component is program output
□ may be stored for future use, sent over network, or displayed
□ may be binary or text

■ Important from a program security perspective that the output
conform to the expected form and interpretation

■ Programs must identify what is permissible output content and
filter any possibly untrusted data to ensure that only valid output is
displayed

■ Character set should be specified

Introduction to IT Security 428

Software signatures

■ (Stored or transmitted) code itself can become the target of attacks
□ e.g. virus modifying other code
□ e.g. malware being inserted into otherwise benevolent code in transit

■ This is an attack against the integrity of the code
□ have a standard cryptographic method to protect against integrity violation:

digital signatures
□ since code is rarely transmitted in a mutually authenticated secure channel,

typically use asymmetric (and not symmetric) signatures

■ Different components required for code signatures
□ cryptographic algorithms and packet/executable formats → easy
□ key management of private key at developer side → ideally offline
□ unspoofable/authentic public key distribution to all verifying instances

→ this is the hard problem

Introduction to IT Security 429

Software signatures:
signing a binary

■ Apply standard asymmetric signature
□ hash program binary (“the code”)
□ apply RSA or ECDSA (in the future PQC singature) with private key
□ attach meta data (e.g. identity of signer) and signature to code (careful

not to modify the binary in this process and thus invalidate signature
→ required package standard with added signatures)

Introduction to IT Security 430

Software signatures:
verifying a binary

■ Verify asymmetric signature
□ extract signature value from package format
□ hash program binary (“the code”)
□ apply RSA or ECDSA verification with public key
□ main problem: how to receive and authenticate public key of developer

sub problem: how to identify real developer
□ often involves certificate authority (identification of developer still

problematic)

Introduction to IT Security 431

Software signatures:
distributing public keys
■ One (e.g. OS) vendor can ship public keys for verifying additional

components with the software package
□ works for drivers, add-ons, and other modules by the same vendor
□ works if that vendor also re-signs and re-distributes third-party code

(e.g. Microsoft for Windows drivers)

■ One vendor can run its own CA
□ can sign public keys of (verified) developers
□ developers then sign their own code and attach their certificate in

addition to the signature
□ verifying code uses CA public key (which must be shipped e.g. with the

OS) to first verify the certificate and then, with the public key contained
in the certificate, the code

□ works if all developers register with one vendor (e.g. Apple)

■ Every developer can create their own keypair/CA
□ no single point of failure (or censorship)
□ but public keys not necessarily authentic → rely on key continuity

concepts
□ e.g. Android apps

Introduction to IT Security 432

Deterministic/reproducible/auditable builds
Open issue: does the binary correspond to the source?

■ Issue is ignored by most programmers
□ assumption is that the compiler or interpreter generates or executes code that validly

implements the language statements
□ additional assumption is that the compiler/library/kernel/hardware itself is not malicious

(cf. [Ken Thompson: “Reflections on Trusting Trust”, Communication of the ACM, Vol. 27,
No. 8, August 1984, pp. 761-763], online at http://cm.bell-labs.com/who/ken/trust.html)

■ Requires comparing machine code with original source
□ slow and difficult

■ Development of computer systems with very high assurance level is the one area
where this level of checking is required
□ specifically Common Criteria assurance level of EAL 7

■ Starting to become a practical possibility
□ Gitian with multiple builders (http://gitian.org/) used by Bitcoin client and Tor browser

bundle (https://blog.torproject.org/blog/deterministic-builds-part-two-technical-details)
□ Debian aims at reproducible builds for its packages

(https://wiki.debian.org/ReproducibleBuilds): 61% (of 21448 packages) reproducible on
2014-11-11, 22462/24351 (92.2%) on 2016-12-12, 28893/30363 (95.1%) on 2021-01-01

□ Android reproducibility reports: https://android.ins.jku.at/reproducible-builds/
□ if you are looking for a Master's thesis topic, this still is one :-)

http://cm.bell-labs.com/who/ken/trust.html
http://gitian.org/
https://blog.torproject.org/blog/deterministic-builds-part-two-technical-details
https://wiki.debian.org/ReproducibleBuilds
https://android.ins.jku.at/reproducible-builds/

	Slide 390
	Slide 391
	Slide 392
	Slide 393
	Slide 394
	Slide 395
	Slide 396
	Slide 397
	Slide 398
	Slide 399
	Slide 400
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417
	Slide 418
	Slide 419
	Slide 420
	Slide 421
	Slide 422
	Slide 423
	Slide 424
	Slide 425
	Slide 426
	Slide 427
	Slide 428
	Slide 429
	Slide 430
	Slide 431
	Slide 432

