
Introduction to IT Security 355

Chapter 7

Operating System Security

Introduction to IT Security 356

Operating System (OS) security

■ Each layer of code needs measures in place to provide
appropriate security services

■ Each layer is vulnerable to attack from below if the lower
layers are not secured appropriately

Main security
boundary

(User) ApplicationsOperating System
Services

Operating System Kernel

Hardware

Drivers BIOS / SMM

Introduction to IT Security 357

Access control to separate processes and
users

■ ITU-T Recommendation X.800 defines access control as follows:
“The prevention of unauthorized use of a resource, including the
prevention of use of a resource in an unauthorized manner.”

■ RFC 2828 defines computer security as:
“Measures that implement and assure security services in a
computer system, particularly those that assure access control
service”.

■ Access control required for different resources such as
□ files
□ memory
□ network, I/O, hardware, etc.

Introduction to IT Security 358

Access control policies

■ Discretionary Access Control (DAC): based on the identity of the
requestor and on access rules set by the owner of the entity

■ Mandatory Access Control (MAC): based on comparing security
labels with security clearances (set by a policy); mandatory
because owner/accessor may not be able to delegate access

■ Role-Based Access Control (RBAC): based on roles that
users/processes have within a system and rules based on those
roles

Standard file systems implement DAC, may be extended by MAC for
better security against privilege escalation

Introduction to IT Security 359

DAC access matrix
■ Subjects are entities capable of accessing

objects (users, their processes, etc.)
Typical classes (from standard UNIX def.):
□ owner (creator or changed afterwards)
□ group (of subjects)
□ world (all know subjects)

■ Objects are resources to which access is
controlled (e.g. directories, files, network
ports, virtual memory regions, etc.)

■ Access rights describe the level of access to
an object, standard set:
□ read
□ write
□ execute

Or potentially more fine-grained (delete,
create, search, etc.)

Introduction to IT Security 360

Access control lists (ACLs) vs. Capability
lists

Introduction to IT Security 361

Access control lists on UNIX

■ Unique (numeric) user ID (UID)

■ Member of a primary group ID (GID) and potential auxiliary groups

■ Traditionally 12 bits (read/write/execute for owner/group/world plus
setuid, setgid, and sticky bits)

■ Modern UNIX systems support full ACL with arbitrary
subject/access right combinations

■ Superuser („root“) is exempt from these restrictions

Introduction to IT Security 362

Role-based access control (RBAC)

■ Additional indirection between subjects and object access rights

■ Can be emulated with groups in DAC model, but might lose
hierarchy between roles in this case

■ RBAC often coupled with MAC policy

■ Many extensions, e.g. time-based, incompatible roles, one-role-at-
a-time, only one role per session...

Introduction to IT Security 363

Mandatory access control (MAC)
■ In contrast to DAC, MAC is managed by administrator

■ In practical implementations, superuser is also subject to MAC
policy

■ Relates security classification of objects with security clearances
of subjects to define access rights

■ Security classifications and clearances are organized in levels

■ With definition of multiple categories/levels often referred to as
multilevel security (MLS) with two main properties:
□ no read up: subject can only read an object of less or equal security

level (called simple security property, ss-property)
□ no write down: subject can only write an object of greater or equal

security level (star property, *-property)
□ additional property to implement DAC model, i.e. granting another

subject/role access to resource under owner's discretion (ds-property)

Formal definition in terms of Bell-LaPadula (BLP) model

Introduction to IT Security 364

Case study: SELinux

■ „Security Enhanced Linux“

■ Developed by NSA and released as open source (GPL) in 2000,
merged into mainline Linux kernel in 2003

■ Implements MAC for Linux with policy support for MLS and RBAC

■ Shipped with all modern Linux distributions (RedHat pioneered it
and spends effort on policy improvements, e.g. Debian allows to
easily enable SELinux support)

■ Android 4.3 started shipping SELinux in permissive mode, Android
4.4 switched to enforcing/strict mode by default

Short summary: additional restrictions to user and daemon processes,
very fine granularity on (pseudo-) files, network sockets, etc. → even
the root user can be severely restricted

Introduction to IT Security 365

Case study: SELinux

Concept of “type”

■ Files, sockets, etc. have a type

■ E.g. httpd_sys_content_t for objects under /var/www
■ E.g. etc_t for objects under /etc

Concept of “domain”

■ Processes run in a domain

■ Directly determines which access to types the process has

■ E.g. named_t for the name server daemon

■ E.g. initrc_t for init scripts

Introduction to IT Security 366

Case study: SELinux
Concept of “role”

■ Roles define which user or process can access what domains
(processes) and what type (files, sockets, etc.)

■ Users and processes can transition to roles (e.g. during login)

■ E.g. user_r for ordinary users

■ E.g. system_r for processes starting under system role

■ Rules determine which transitions are allowed
→ the “SELinux policy”

Files are “labeled” with types, the policy defines which domains the
users and processes should run in
→ need filesystem and user space loader support for SELinux in
addition to kernel support

Introduction to IT Security 367

Case study: SELinux

Concept of “identity”

■ Every user account has an identity

■ Identities do not change

■ Identities determine which roles a user can transition to

■ E.g. user_u for generic unprivileged users

■ E.g. root for the superuser account

Concept of “security context”
■ Every process and object has an associated security context with

three fields (when printed in text, then denoted by colon)
□ identity:role:domain (for processes)

or
□ identity:role:type (for files, directories, devices, sockets, etc.)

Introduction to IT Security 368

Case study: SELinux
■ Example of process security context

root@pub ~ # ps -o pid,ruser,args,context -C apache2.prefork
 PID RUSER COMMAND CONTEXT
23214 root /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23216 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23227 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23228 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23230 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23231 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23232 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23444 www-data /usr/sbin/apache2.prefork – system_u:system_r:httpd_t:s0

■ Example of user security context
root@pub ~ # id -Z
unconfined_u:unconfined_r:unconfined_t:SystemLow-SystemHigh

■ Example of file security context
root@pub ~ # ls -Z /etc/apache2/apache2.conf
system_u:object_r:httpd_config_t:SystemLow /etc/apache2/apache2.conf
root@pub ~ # ls -Z /var/www/html/index.html
unconfined_u:object_r:httpd_sys_content_t:SystemLow /var/www/html/index.html

Read-only web content

Introduction to IT Security 369

Case study: SELinux
■ Additional support tools, e.g. audit daemon to log violations of

SELinux policy

■ Tools to create and compile policy as well as load during system
bootup

■ Modularized policy allows loading of policy “modules” (often rules
for specific applications/daemons) at run time (if not prevented by
main policy)
□ e.g. Android allows run-time loading of additional policies only when

these are signed by the same private key that signed the whole system
(firmware) image

□ additional support for boolean variables to en-/disable policy parts

■ Two modes
□ permissive (report violations, but don't block)
□ enforcing (only allow what is permitted by policy)

Introduction to IT Security 370

Memory isolation

■ One main task of OS is to isolate virtual process memory

■ On standard Intel-compatible processors (x86, amd64, etc.), use
separation into processor „rings“ to split privileged „kernel“ code
from unprivileged „user space“ code
□ on ARM instruction set, use privilege levels (EL3-EL0)

■ Communication between different processes has to use kernel
interfaces → so-called context switches to copy memory regions
between user space and kernel space

■ Efficient memory separation is supported by processor hardware
(available on all modern CPUs)

Introduction to IT Security 371

Trusted systems

■ Trust: „The extent to which someone who relies on a system can
have confidence that the system meets it specifications.“

■ Trusted system: a system believed to enforce a given set of
attributes to a stated degree of assurance

■ Trusted computing base (TCB): portion of a system that
enforces a particular policy, must be resistant to tampering and
circumvention
□ informally, those components one has to trust for a system to be

trustworthy
□ practically, needs to be small and simple enough to allow

systematic analysis or even formal validation

Introduction to IT Security 372

Trusted Platform Module (TPM)

■ Concept from Trusted
Computing Group

■ Hardware module at heart of
hardware/software approach to
trusted computing (TC)

■ Uses a TPM chip
□ motherboard, smart card,

processor
□ working with approved

hardware/software
□ generating and using crypto keys

■ Slowly being used in mobile
devices as well

Introduction to IT Security 373

Secure/trusted/verified/
authenticated/... boot

■ Responsible for booting entire OS in stages and ensuring each is
valid and approved for use
□ at each stage digital signature associated with code is verified
□ TPM keeps a tamper-evident log of the loading process

■ Log records versions of all code running
□ can then expand trust boundary to include additional hardware and

application and utility software
□ confirms component is on the approved list, is digitally signed, and that

serial number hasn’t been revoked

■ Result is a configuration that is well-defined with approved
components
□ Note: “approved content” ≠ “correct content” ≠ “bug-free content”

● bug in boot loader → load any kind of modified OS and mark it as “good”

Introduction to IT Security 374

Certification service

■ Once a configuration is achieved and logged the TPM can certify
configuration to others
□ can produce a digital certificate

■ Confidence that configuration is unaltered because:
□ TPM is considered trustworthy
□ only the TPM possesses this TPM’s private key

■ Include challenge value in certificate to also ensure it is timely
□ replay attacks - get value from “good” boot and substitute it

■ Provides a hierarchical certification approach
□ hardware/OS configuration
□ OS certifies application programs
□ user has confidence is application configuration

Introduction to IT Security 375

Encryption service
■ Encrypts data so that it can only be

decrypted by a machine with a
certain configuration

■ TPM maintains a master secret key
unique to machine
□ used to generate secret encryption

key for every possible configuration
of that machine

■ Can extend scheme upward
□ provide encryption key to application

so that decryption can only be done
by desired version of application
running on desired version of the
desired OS

□ encrypted data can be stored locally
or transmitted to a peer application
on a remote machine

Introduction to IT Security 376

Virtual Machine Manager (VMM) as a TCB
■ Virtualization: a technology that provides an abstraction of the

resources used by some software which runs in a simulated
environment called a virtual machine (VM)
□ benefits include better efficiency in the use of the physical system

resources
□ provides support for multiple distinct operating systems and associated

applications on one physical system
□ raises additional security concerns

■ Additional software layer: Virtual Machine Manager (VMM),
sometimes also called hypervisor, often related to the concept of a
microkernel

■ VMM is responsible for isolation/separation of guest operating
systems → sometimes referred to as compartmentalization

■ If VMM does this securely, guest OS cannot attack each other, the
VMM, or the hardware

■ Therefore, VMM becomes trusted computing base (TCB)

Introduction to IT Security 377

VMM types

Type 1 VMM
■ Also called „native“, „full“, or

„bare-metal“ virtualization

■ Runs natively on hardware

■ Multiple OS on top, none of
these guest OS is privileged

Type 2 VMM
■ Also called „hosted“

virtualization

■ Runs on top of „host“ OS

■ Multiple guest OS on top

Apps

Guest OS 1
Kernel

Hypervisor / VMM

Hardware
Drivers BIOS / SMM

Apps

Guest OS 2
Kernel

Apps

Guest OS 1
Kernel

Host Operating System Kernel

Hardware
Drivers BIOS / SMM

Apps

Guest OS 2
Kernel

Hypervisor / VMMHost OS
Services

Host (User)
Apps

Introduction to IT Security 378

Comparison of VMM types
■ Type 1 VMM

□ sometimes assumed to be the most secure
□ in practice also depends on hardware drivers and therefore adds

complexity of a small OS (TCB is more than just the hypervisor!)
□ example implementations: VMware ESX(i), Xen, L4, pKVM

■ Type 2 VMM
□ easier to set up, can be installed as a (privileged) application on top of

standard OS
□ uses hardware drivers and scheduling of host OS kernel (TCB is host

kernel+userspace+hypervisor)
□ example implementations: VMware Workstation, VirtualBox,

KVM/Qemu

■ Application virtualization / container concepts
□ not really virtualization, but often used as a low-overhead replacement
□ single OS kernel, compartments/containers/zones on top with different

name spaces for file systems, network, processes, etc.
□ example implementations: Solaris Zones, Linux Container, Docker.io

https://lwn.net/Articles/836693/

Introduction to IT Security 379

Common Criteria (CC)

■ Common Criteria for Information Technology and Security Evaluation
□ ISO standards for security requirements and defining evaluation criteria

■ Aim is to provide greater confidence in IT product security
□ development using secure requirements
□ evaluation confirming meets requirements
□ operation in accordance with requirements

■ Following successful evaluation a product may be listed as
”CC certified”
□ NIST/NSA publishes lists of evaluated products

Introduction to IT Security 380

Case study: Qubes OS

■ Qubes OS is an open source desktop operating system building
upon Linux and virtualization (Xen hypervisor in R1 and R2,
different VMMs supported starting with R3)

■ Main focus is on security by compartmentalization
□ task based, not application based
□ virtual machines for different security domains, e.g. work, personal,

banking, private key storage and use, untrusted, etc.
□ supports different guest OS, including full virtualization (e.g. Windows)
□ innovation is nearly seamless integration of windows (with indication of

security domain) and interaction between VMs

■ Can be used on most recent desktop/laptop hardware (hardware
driver support by Linux kernel as available in recent Fedora
releases)

Introduction to IT Security 381

Qubes OS architecture features
■ Based on a (relatively small and secure) type-1 hypervisor (Xen),

support for other VMMs starting with R3

■ Networking code sand-boxed in an unprivileged VM (using
IOMMU/VT-d)

■ USB stacks and drivers sand-boxed in an unprivileged VM
(experimental in R2)

■ No networking code in the privileged domain (dom0)

■ All user applications run in “AppVMs,” lightweight VMs based on
Linux (or Windows starting with R2)

■ Centralized updates of all AppVMs based on the same template

■ Qubes GUI virtualization presents applications as if they were
running locally

■ Qubes GUI provides isolation between apps sharing the same
desktop

■ Secure system boot based (optional)

Introduction to IT Security 382

Qubes OS security domains

■ Domains represent areas, e.g.
□ personal, work, banking
□ work-web, work-project-XYZ, work-accounting
□ personal-very-private, personal-health

■ No 1-1 mapping between apps and VMs!
□ If anything, then user tasks-oriented sandboxing, not app-oriented
□ E.g. few benefits from sandboxing: The Web Browser, or The PDF

Reader

■ It’s data we want protect, not apps/system

Introduction to IT Security 383

Qubes OS window decorations

Introduction to IT Security 384

Qubes OS windows from different security
domains

Acknowledgments: screenshot from https://qubes-os.org/wiki/QubesScreenshots

Introduction to IT Security 385

Qubes OS windows from different security
domains

Acknowledgments: screenshot from https://qubes-os.org/wiki/QubesScreenshots

Introduction to IT Security 387

Qubes OS types of VMs from network
point of view
■ NetVMs

□ have NICs or USB modems assigned via PCI-passthrough
□ provide networking to other VMs (run Xen Net Backends)

■ AppVMs
□ have no physical networking devices assigned
□ consume networking provided by other VMs (run Xen Net Frontends)
□ some AppVMs might not use networking (i.e. be network-disconnected)

■ ProxyVMs
□ behave as AppVMs to other NetVMs (or ProxyVMs), i.e. consume

networking
□ behave as NetVMs to other AppVMs (or ProxyVMs), i.e. provide

networking
□ functions: firewalling, VPN, Tor’ing, monitoring, proxying, etc.

■ Dom0
□ has no network interfaces!

Acknowledgments: summary by Joanna Rutkowska

Introduction to IT Security 389

Qubes OS example case: sanitizing PDFs

Acknowledgments: summary by Joanna Rutkowska

	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385
	Slide 387
	Slide 389

