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Operating System Security



Introduction to IT Security 356

Operating System (OS) security

■ Each layer of code needs measures in place to provide 
appropriate security services

■ Each layer is vulnerable to attack from below if the lower 
layers are not secured appropriately

Main security
boundary

(User) ApplicationsOperating System
Services

Operating System Kernel

Hardware

Drivers BIOS / SMM
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Access control to separate processes and 
users

■ ITU-T Recommendation X.800 defines access control as follows: 
“The prevention of unauthorized use of a resource, including the 
prevention of use of a resource in an unauthorized manner.”

■ RFC 2828 defines computer security as:
“Measures that implement and assure security services in a 
computer system, particularly those that assure access control 
service”.

■ Access control required for different resources such as
□ files
□ memory
□ network, I/O, hardware, etc.
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Access control policies

■ Discretionary Access Control (DAC): based on the identity of the 
requestor and on access rules set by the owner of the entity

■ Mandatory Access Control (MAC): based on comparing security 
labels with security clearances (set by a policy); mandatory 
because owner/accessor may not be able to delegate access

■ Role-Based Access Control (RBAC): based on roles that 
users/processes have within a system and rules based on those 
roles

Standard file systems implement DAC, may be extended by MAC for 
better security against privilege escalation
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DAC access matrix
■ Subjects are entities capable of accessing 

objects (users, their processes, etc.)
Typical classes (from standard UNIX def.):
□ owner (creator or changed afterwards)
□ group (of subjects)
□ world (all know subjects)

■ Objects are resources to which access is 
controlled (e.g. directories, files, network 
ports, virtual memory regions, etc.)

■ Access rights describe the level of access to 
an object, standard set:
□ read
□ write
□ execute

Or potentially more fine-grained (delete, 
create, search, etc.)
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Access control lists (ACLs) vs. Capability 
lists
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Access control lists on UNIX

■ Unique (numeric) user ID (UID)

■ Member of a primary group ID (GID) and potential auxiliary groups

■ Traditionally 12 bits (read/write/execute for owner/group/world plus 
setuid, setgid, and sticky bits)

■ Modern UNIX systems support full ACL with arbitrary 
subject/access right combinations

■ Superuser („root“) is exempt from these restrictions
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Role-based access control (RBAC)

■ Additional indirection between subjects and object access rights

■ Can be emulated with groups in DAC model, but might lose 
hierarchy between roles in this case

■ RBAC often coupled with MAC policy

■ Many extensions, e.g. time-based, incompatible roles, one-role-at-
a-time, only one role per session...
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Mandatory access control (MAC)
■ In contrast to DAC, MAC is managed by administrator

■ In practical implementations, superuser is also subject to MAC 
policy

■ Relates security classification of objects with security clearances 
of subjects to define access rights

■ Security classifications and clearances are organized in levels

■ With definition of multiple categories/levels often referred to as 
multilevel security (MLS) with two main properties:
□ no read up: subject can only read an object of less or equal security 

level (called simple security property, ss-property)
□ no write down: subject can only write an object of greater or equal 

security level (star property, *-property)
□ additional property to implement DAC model, i.e. granting another 

subject/role access to resource under owner's discretion (ds-property)

Formal definition in terms of Bell-LaPadula (BLP) model
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Case study: SELinux

■ „Security Enhanced Linux“

■ Developed by NSA and released as open source (GPL) in 2000, 
merged into mainline Linux kernel in 2003

■ Implements MAC for Linux with policy support for MLS and RBAC

■ Shipped with all modern Linux distributions (RedHat pioneered it 
and spends effort on policy improvements, e.g. Debian allows to 
easily enable SELinux support)

■ Android 4.3 started shipping SELinux in permissive mode, Android 
4.4 switched to enforcing/strict mode by default

Short summary: additional restrictions to user and daemon processes, 
very fine granularity on (pseudo-) files, network sockets, etc. → even 
the root user can be severely restricted
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Case study: SELinux

Concept of “type”

■ Files, sockets, etc. have a type

■ E.g. httpd_sys_content_t for objects under /var/www
■ E.g. etc_t for objects under /etc

Concept of “domain”

■ Processes run in a domain

■ Directly determines which access to types the process has

■ E.g. named_t for the name server daemon

■ E.g. initrc_t for init scripts
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Case study: SELinux
Concept of “role”

■ Roles define which user or process can access what domains 
(processes) and what type (files, sockets, etc.)

■ Users and processes can transition to roles (e.g. during login)

■ E.g. user_r for ordinary users

■ E.g. system_r for processes starting under system role

■ Rules determine which transitions are allowed 
→ the “SELinux policy”

Files are “labeled” with types, the policy defines which domains the 
users and processes should run in 
→ need filesystem and user space loader support for SELinux in 
addition to kernel support
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Case study: SELinux

Concept of “identity”

■ Every user account has an identity

■ Identities do not change

■ Identities determine which roles a user can transition to

■ E.g. user_u for generic unprivileged users

■ E.g. root for the superuser account

Concept of “security context”
■ Every process and object has an associated security context with 

three fields (when printed in text, then denoted by colon)
□ identity:role:domain (for processes)

or
□ identity:role:type (for files, directories, devices, sockets, etc.)



Introduction to IT Security 368

Case study: SELinux
■ Example of process security context

root@pub ~ # ps -o pid,ruser,args,context -C apache2.prefork
  PID RUSER    COMMAND                     CONTEXT
23214 root     /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23216 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23227 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23228 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23230 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23231 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23232 www-data /usr/sbin/apache2.prefork - system_u:system_r:httpd_t:s0
23444 www-data /usr/sbin/apache2.prefork – system_u:system_r:httpd_t:s0

■ Example of user security context
root@pub ~ # id -Z
unconfined_u:unconfined_r:unconfined_t:SystemLow-SystemHigh

■ Example of file security context
root@pub ~ # ls -Z /etc/apache2/apache2.conf
system_u:object_r:httpd_config_t:SystemLow /etc/apache2/apache2.conf
root@pub ~ # ls -Z /var/www/html/index.html
unconfined_u:object_r:httpd_sys_content_t:SystemLow /var/www/html/index.html

Read-only web content
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Case study: SELinux
■ Additional support tools, e.g. audit daemon to log violations of 

SELinux policy

■ Tools to create and compile policy as well as load during system 
bootup

■ Modularized policy allows loading of policy “modules” (often rules 
for specific applications/daemons) at run time (if not prevented by 
main policy)
□ e.g. Android allows run-time loading of additional policies only when 

these are signed by the same private key that signed the whole system 
(firmware) image

□ additional support for boolean variables to en-/disable policy parts

■ Two modes
□ permissive (report violations, but don't block)
□ enforcing (only allow what is permitted by policy)
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Memory isolation

■ One main task of OS is to isolate virtual process memory

■ On standard Intel-compatible processors (x86, amd64, etc.), use 
separation into processor „rings“ to split privileged „kernel“ code 
from unprivileged „user space“ code
□ on ARM instruction set, use privilege levels (EL3-EL0)

■ Communication between different processes has to use kernel 
interfaces → so-called context switches to copy memory regions 
between user space and kernel space

■ Efficient memory separation is supported by processor hardware 
(available on all modern CPUs)
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Trusted systems

■ Trust: „The extent to which someone who relies on a system can 
have confidence that the system meets it specifications.“

■ Trusted system: a system believed to enforce a given set of 
attributes to a stated degree of assurance

■ Trusted computing base (TCB): portion of a system that 
enforces a particular policy, must be resistant to tampering and 
circumvention
□ informally, those components one has to trust for a system to be 

trustworthy
□ practically, needs to be small and simple enough to allow 

systematic analysis or even formal validation
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Trusted Platform Module (TPM)

■ Concept from Trusted 
Computing Group 

■ Hardware module at heart of 
hardware/software approach to 
trusted computing (TC)

■ Uses a TPM chip
□ motherboard, smart card, 

processor
□ working with approved 

hardware/software
□ generating and using crypto keys

■ Slowly being used in mobile 
devices as well
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Secure/trusted/verified/
authenticated/... boot

■ Responsible for booting entire OS in stages and ensuring each is 
valid and approved for use
□ at each stage digital signature associated with code is verified
□ TPM keeps a tamper-evident log of the loading process

■ Log records versions of all code running
□ can then expand trust boundary to include additional hardware and 

application and utility software
□ confirms component is on the approved list, is digitally signed, and that 

serial number hasn’t been revoked

■ Result is a configuration that is well-defined with approved 
components
□ Note: “approved content” ≠ “correct content” ≠ “bug-free content”

● bug in boot loader → load any kind of modified OS and mark it as “good”
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Certification service

■ Once a configuration is achieved and logged the TPM can certify 
configuration to others
□ can produce a digital certificate

■ Confidence that configuration is unaltered because: 
□ TPM is considered trustworthy
□ only the TPM possesses this TPM’s private key

■ Include challenge value in certificate to also ensure it is timely
□ replay attacks - get value from “good” boot and substitute it

■ Provides a hierarchical certification approach
□ hardware/OS configuration
□ OS certifies application programs
□ user has confidence is application configuration
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Encryption service
■ Encrypts data so that it can only be 

decrypted by a machine with a 
certain configuration

■ TPM maintains a master secret key 
unique to machine
□ used to generate secret encryption 

key for every possible configuration 
of that machine

■ Can extend scheme upward
□ provide encryption key to application 

so that decryption can only be done 
by desired version of application 
running on desired version of the 
desired OS

□ encrypted data can be stored locally 
or transmitted to a peer application 
on a remote machine
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Virtual Machine Manager (VMM) as a TCB
■ Virtualization: a technology that provides an abstraction of the 

resources used by some software which runs in a simulated 
environment called a virtual machine (VM)
□ benefits include better efficiency in the use of the physical system 

resources
□ provides support for multiple distinct operating systems and associated 

applications on one physical system
□ raises additional security concerns

■ Additional software layer: Virtual Machine Manager (VMM), 
sometimes also called hypervisor, often related to the concept of a 
microkernel

■ VMM is responsible for isolation/separation of guest operating 
systems → sometimes referred to as compartmentalization

■ If VMM does this securely, guest OS cannot attack each other, the 
VMM, or the hardware

■ Therefore, VMM becomes trusted computing base (TCB)
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VMM types

Type 1 VMM
■ Also called „native“, „full“, or 

„bare-metal“ virtualization

■ Runs natively on hardware

■ Multiple OS on top, none of 
these guest OS is privileged

Type 2 VMM
■ Also called „hosted“ 

virtualization

■ Runs on top of „host“ OS

■ Multiple guest OS on top

Apps

Guest OS 1
Kernel

Hypervisor / VMM

Hardware
Drivers BIOS / SMM

Apps

Guest OS 2
Kernel

Apps

Guest OS 1
Kernel

Host Operating System Kernel

Hardware
Drivers BIOS / SMM

Apps

Guest OS 2
Kernel

Hypervisor / VMMHost OS
Services

Host (User)
Apps
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Comparison of VMM types
■ Type 1 VMM

□ sometimes assumed to be the most secure
□ in practice also depends on hardware drivers and therefore adds 

complexity of a small OS (TCB is more than just the hypervisor!)
□ example implementations: VMware ESX(i), Xen, L4, pKVM

■ Type 2 VMM
□ easier to set up, can be installed as a (privileged) application on top of 

standard OS
□ uses hardware drivers and scheduling of host OS kernel (TCB is host 

kernel+userspace+hypervisor)
□ example implementations: VMware Workstation, VirtualBox, 

KVM/Qemu

■ Application virtualization / container concepts
□ not really virtualization, but often used as a low-overhead replacement
□ single OS kernel, compartments/containers/zones on top with different 

name spaces for file systems, network, processes, etc.
□ example implementations: Solaris Zones, Linux Container, Docker.io

https://lwn.net/Articles/836693/
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Common Criteria (CC)

■ Common Criteria for Information Technology and Security Evaluation
□ ISO standards for security requirements and defining evaluation criteria

■ Aim is to provide greater confidence in IT product security
□ development using secure requirements
□ evaluation confirming meets requirements
□ operation in accordance with requirements

■ Following successful evaluation a product may be listed as 
”CC certified”
□ NIST/NSA publishes lists of evaluated products
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Case study: Qubes OS

■ Qubes OS is an open source desktop operating system building 
upon Linux and virtualization (Xen hypervisor in R1 and R2, 
different VMMs supported starting with R3) 

■ Main focus is on security by compartmentalization
□ task based, not application based
□ virtual machines for different security domains, e.g. work, personal, 

banking, private key storage and use, untrusted, etc.
□ supports different guest OS, including full virtualization (e.g. Windows)
□ innovation is nearly seamless integration of windows (with indication of 

security domain) and interaction between VMs

■ Can be used on most recent desktop/laptop hardware (hardware 
driver support by Linux kernel as available in recent Fedora 
releases)
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Qubes OS architecture features
■ Based on a (relatively small and secure) type-1 hypervisor (Xen), 

support for other VMMs starting with R3

■ Networking code sand-boxed in an unprivileged VM (using 
IOMMU/VT-d)

■ USB stacks and drivers sand-boxed in an unprivileged VM 
(experimental in R2)

■ No networking code in the privileged domain (dom0)

■ All user applications run in “AppVMs,” lightweight VMs based on 
Linux (or Windows starting with R2)

■ Centralized updates of all AppVMs based on the same template

■ Qubes GUI virtualization presents applications as if they were 
running locally

■ Qubes GUI provides isolation between apps sharing the same 
desktop

■ Secure system boot based (optional) 
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Qubes OS security domains

■ Domains represent areas, e.g.
□ personal, work, banking
□ work-web, work-project-XYZ, work-accounting
□ personal-very-private, personal-health

■ No 1-1 mapping between apps and VMs!
□ If anything, then user tasks-oriented sandboxing, not app-oriented
□ E.g. few benefits from sandboxing: The Web Browser, or The PDF 

Reader

■ It’s data we want protect, not apps/system
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Qubes OS window decorations
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Qubes OS windows from different security 
domains

Acknowledgments: screenshot from https://qubes-os.org/wiki/QubesScreenshots
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Qubes OS windows from different security 
domains

Acknowledgments: screenshot from https://qubes-os.org/wiki/QubesScreenshots
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Qubes OS types of VMs from network 
point of view
■ NetVMs

□ have NICs or USB modems assigned via PCI-passthrough
□ provide networking to other VMs (run Xen Net Backends)

■ AppVMs
□ have no physical networking devices assigned
□ consume networking provided by other VMs (run Xen Net Frontends)
□ some AppVMs might not use networking (i.e. be network-disconnected)

■ ProxyVMs
□ behave as AppVMs to other NetVMs (or ProxyVMs), i.e. consume 

networking
□ behave as NetVMs to other AppVMs (or ProxyVMs), i.e. provide 

networking
□ functions: firewalling, VPN, Tor’ing, monitoring, proxying, etc.

■ Dom0
□ has no network interfaces!

Acknowledgments: summary by Joanna Rutkowska
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Qubes OS example case: sanitizing PDFs

Acknowledgments: summary by Joanna Rutkowska
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