
Introduction to IT Security 86

Chapter 3

A Primer in Cryptography

(Crypto means Cryptography, not Cryptocurreny)

Introduction to IT Security 87

Cryptography:
Basic terminology

 plaintext (Klartext) – original message
 ciphertext (Chiffrat) – coded message
 cipher / chiffre (Verschlüsselungsalgorithmus) – algorithm for

transforming plaintext to ciphertext and vice versa
 key (Schlüssel) – info used in cipher known only to

sender/receiver
 encipher / encrypt (verschlüsseln) – converting plaintext to

ciphertext – different from encode (code without a key)!
 decipher / decrypt (entschlüsseln) – recovering plaintext from

ciphertext
 cryptography (Kryptographie) – study of encryption principles

/ methods
 cryptanalysis (Kryptoanalyse) – study of principles / methods

of deciphering ciphertext without knowing key
 cryptology (Kryptologie) – scientific field of both cryptography

and cryptanalysis

Introduction to IT Security 88

Cryptography:
Kerkhoff's principle

„The security of a cryptosystem must not depend on
keeping the cryptographic algorithm secret.”

 Security of cipher may only depend on the security of the key
 Always assume all details of the algorithm / method / protocol to

be publicly known
 All modern cryptographic methods follow this principle (cf. AES

selection process – done completely in the open, with public
rounds of discussion)

Introduction to IT Security 89

Cryptography:
Classification of primitives

■ Cryptographic hash (0 keys): not reversible

■ Symmetric (1 secret key)
□ symmetric encryption, also called cipher or chiffre

● block cipher
● stream cipher

□ symmetric signature, also called message authentication code (MAC)

■ Asymmetric (2 keys: public key and private key)
□ key agreement
□ asymmetric encryption
□ asymmetric signature

Remember whole
classification

(not only for exam)!

Introduction to IT Security 90

Cryptography:
Classification of primitives

Symm.
cipher

Symm.
authen-
ticated
cipher

Symm.
cipher
with
block
tweaks

Crypto-
graphic
hash

Symm.
message
authentication
code

Key agree-
ment

Asymm.
encryption

Asymm.
signature

Confidentiality X X X Careful!

Integrity X NO! X with hash

Integrity of
data at rest

X

Authenticity partial NO! with public
key

Key exchange X X

Non-
repudiability

with
certificates

Algorithm AES-CBC
AES-CTR
ChaCha20

AES-CCM
ChaCha20
-Poly1305

AES-
XTS

SHA-2
SHA-3

HMAC-SHA2
HMAC-SHA3
Poly1305

DH
Curve25519

RSA RSA
Ed25519

Introduction to IT Security 91

Cryptography:
Symmetric encryption

 Or conventional / (private-key) / secret-key / single-key
 Sender and recipient share a common key → must have obtained

copies of the secret key in a secure fashion and must keep the key
secure

 All classical encryption algorithms are private-key
 Was only type prior to invention of public-key in 1970’s
 And by far most widely used

 the universal technique for providing confidentiality for
transmitted or stored data

Introduction to IT Security 92

Cryptography:
Symmetric encryption

= same/identical/secret

Introduction to IT Security 93

Cryptography:
Symmetric encryption requirements

■ Two requirements for secure use of symmetric encryption:
□ a strong encryption algorithm
□ a secret key known only to sender / receiver

■ Mathematically have (X=cleartext, Y=ciphertext):
□ Y = E(K, X)
□ X = D(K, Y)

■ Assume encryption algorithm is known

■ Implies a secure channel to distribute key K

Introduction to IT Security 94

Attacking symmetric encryption

Cryptanalytic Attacks
■ Rely on:

□ nature of the algorithm
□ some knowledge of the

general characteristics of the
plaintext

□ some sample plaintext-
ciphertext pairs

■ Exploits the characteristics of
the algorithm to attempt to
deduce a specific plaintext or
the key being used

Brute-Force Attack
■ Try all possible keys on some

ciphertext until an intelligible
translation into plaintext is
obtained

■ On average half of all possible
keys must be tried to achieve
success

 Objective is to recover key, not just message
→ if successful, all future and past messages encrypted with that key are compromised

Introduction to IT Security 95

Cryptanalysis:
Attacks

■ brute force: simply try all possible key combinations

Depending on input knowledge for attack, distinguish between:

■ ciphertext only: only know algorithm and ciphertext, is statistical,
know or can identify/recognize a correct plaintext

■ known plaintext: know/suspect plaintext and ciphertext

■ chosen plaintext: select plaintext and obtain ciphertext

■ chosen ciphertext: select ciphertext and obtain plaintext

■ chosen text: select plaintext or ciphertext to en/decrypt

■ adaptive chosen (plain-/cipher-)text: select text based on
results of previous tries

Introduction to IT Security 96

Cryptanalysis:
Modern methods

■ Differential cryptanalysis
□ try to relate differences between plain texts with differences between

cipher texts

■ Linear cryptanalysis
□ statistical correlations between plain text and cipher text based on

structure of cipher are used to estimate key

■ Timing (and other so-called side-channel) attacks
□ measuring CPU time taken for different operations during the execution

of a cipher
□ when CPU operations are dependent on data (e.g. plain text and/or

key), they might take different execution time
□ statistical analysis concerning probability of key and/or plain text

combinations
□ given sufficient input data (e.g. number of operations with the same key

but different plain texts), can estimate key (and/or plain text)

Introduction to IT Security 97

Cryptanalysis:
Definitions

■ Unconditional security
□ no matter how much computer power or time is available, the cipher

cannot be broken since the ciphertext provides insufficient information
to uniquely determine the corresponding plaintext

□ sometimes called “Shannon unconditional security” after the seminal
paper “Communication Theory of Secrecy Systems” by Claude Elwood
Shannon, 1949

■ Computational security
□ given limited computing resources (e.g. time needed for calculations is

greater than age of universe), the cipher cannot be broken

■ “Acceptable“ security
□ given assumptions on the possibilities of attackers (computing power

available, budget, time-constraints...), the cipher cannot be broken

Introduction to IT Security 98

Cryptanalysis:
Brute force search

■ Always possible to simply try every key

■ Most basic attack, proportional to key size

■ Assume either to know or to recognize plaintext

■ Note concerning numbers: it will only get faster!

■ E.g. 2010 Intel AES-NI supported ca. 50 Mio. AES blocks/s on each core

Introduction to IT Security 99

Symmetric encryption:
One-Time Pad (OTP)
■ If a truly random key as long as the message is used, the cipher will be

unconditionally secure

■ Called a One-Time pad

■ Is unbreakable since ciphertext bears no statistical relationship to the
plaintext
□ This is the only cipher that is provably secure under Shannon

unconditional security!
□ since for any plaintext and any ciphertext there exists a key mapping

one to other

■ Can only use the key once though

■ Problems in generation and safe distribution of key

■ Summary of requirements for One-Time pad (definition):
□ key is (at least) as long as the message
□ key is generated by truly random source

(no statistically significant patterns and unpredictable by attackers)
□ key is only used once

Remember!

Introduction to IT Security 100

Symmetric encryption:
Block vs. stream ciphers
Block ciphers
■ Block ciphers process messages in blocks, each of which is then en-/decrypted

■ Produces an output block for each input block

■ Like a substitution on very big characters
□ 64 bits or more, today use at least 128

■ Can reuse keys – but only if used with suitable block cipher mode

Stream ciphers
■ Stream ciphers process messages continuously a bit or byte at a time when

en/decrypting by combining input with pseudorandom “key”-stream

■ Pseudorandom stream is one that is unpredictable without knowledge of the input key

■ Produces output one element at a time

■ Primary advantages are that they don't need padding and are in many cases faster and
use far less code

Many current ciphers are block ciphers

■ Better analyzed, broader range of applications

■ But: as of 2014, renewed interest in stream ciphers, see e.g. current ChaCha20 use as a
partial result of eSTREAM project by EU ECRYPT network to "identify new stream
ciphers suitable for widespread adoption”

Introduction to IT Security 101

Symmetric
encryption:
Block vs.
stream ciphers

Introduction to IT Security 102

Symmetric encryption:
Block cipher principles

■ Block ciphers look like an extremely large substitution

■ Ideal block cipher, e.g. with 128 bits block size:
□ en-/decryption is a mapping function e: 2128 → 2128

□ “key” is a table of 2128 entries with 128 bits length for each entry (mapping each of
the possible 2128 blocks to another block)

□ Side note: assume 1078 to 1082 atoms in the known, observable universe [1] (very
roughly around 2256) → seems hard to store single key of 128 x 2128 bits

□ key space is (2128)!

■ Instead create from smaller building blocks
□ very often use keys in the range of the block size (e.g. AES is defined with 128 bits

block size and supports 128, 192, or 256 bits key length)
□ these keys only allow a smaller key space than ideal block cipher, but block size

becomes limiting factor for statistical attacks if key is much longer (cf. 3DES)

■ Using idea of a product cipher (i.e. combined substitution and permutation)

■ Most symmetric block ciphers are based on a Feistel Cipher Structure

This means factorial, as in “I tell you, 230 - 220 x 0.5 = 5!”

[1] https://www.universetoday.com/36302/atoms-in-the-universe/

Introduction to IT Security 103

Symmetric encryption:
Ideal block cipher

Introduction to IT Security 104

Advanced Encryption Standard (AES)

■ (Long, long ago) it became clear a replacement for DES (Data
Encryption Standard, used for decades) was needed
□ have theoretical attacks that can break it
□ have demonstrated exhaustive key search attacks
□ can use Triple-DES – but slow, has small blocks

■ Process for AES was open competition (first in that form)
□ US NIST issued call for ciphers in 1997
□ 15 candidates accepted in June 1998
□ 5 were shortlisted in August 1999
□ Rijndael was selected as the AES in Oct-2000
□ issued as FIPS PUB 197 standard in Nov-2001

Introduction to IT Security 105

AES cipher - Rijndael

 Designed by Rijmen-Daemen in Belgium
 Has 128/192/256 bit keys, 128 bit block length

 original Rijndael specification allows 128-256 bit block length in 32 bit
increments

 An iterative rather than Feistel cipher
 processes data as block of 4 columns of 4 bytes
 operates on entire data block in every round

 Designed to be:
 resistant against known attacks
 speed and code compactness on many CPUs
 design simplicity

Introduction to IT Security 106

AES:
Encryption

Introduction to IT Security 107

Modes of operation

■ Block ciphers encrypt fixed size blocks
□ e.g. AES encrypts 128-bit blocks

■ Need some way to en/decrypt arbitrary amounts of data in practice

■ NIST SP 800-38A defines 5 modes
■ Have block and stream modes

■ To cover a wide variety of applications

■ Can be used with any block cipher

Introduction to IT Security 108

Block cipher modes:
Electronic Code Book (ECB)

■ Message is broken into independent blocks which are encrypted

■ Each block is a value which is substituted, like a codebook, hence
name

■ Each block is encoded independently of the other blocks
Ci = EK(Pi)

■ Uses: secure transmission of single values

Introduction to IT Security 109

Electronic Code Book (ECB)

Introduction to IT Security 110

Block cipher modes:
Advantages/Limitations of ECB
■ Message repetitions may show in ciphertext

□ if aligned with message block
□ particularly with data such as graphics
□ or with messages that change very little, which become a code-book

analysis problem
□ one message broken → this message “stays” broken (repetitions!)

■ Weakness is due to the encrypted message blocks being
independent

■ Main use is sending a few blocks of data

Introduction to IT Security 111

Block cipher modes:
Cipher Block Chaining (CBC)
■ Message is broken into blocks

■ Linked together in encryption operation

■ Each previous cipher block is chained with current plaintext block,
hence name

■ Use Initialization Vector (IV) to start process need to transmit IV⇒
Ci = EK(Pi XOR Ci-1)
C0 = EK(IV)

■ Uses: bulk data encryption, authentication in the form of CBC-
MAC

Introduction to IT Security 112

Cipher Block Chaining (CBC)

Careful: Changing
one bit in C1 will
“destroy” all of P1,
and flip exactly the
matching Bit in P2

Introduction to IT Security 113

Block cipher modes:
Message padding

■ At end of message must handle a possible last short block
□ which is not as large as blocksize of cipher
□ pad either with known non-data value (e.g. nulls)
□ or pad last block along with count of pad size

● e.g. [b1 b2 b3 0 0 0 0 5]
● means to have 3 data bytes, then 5 bytes pad+count

□ this may require an extra entire block over those in message
● message ends with …, 0 0 3, 0 2, 1 → How to distinguish from a

short block?

■ There are other, more esoteric modes, which avoid the need for an
extra block

Introduction to IT Security 114

Block cipher modes:
Advantages/Limitations of CBC

■ A ciphertext block depends on all blocks before it

■ Any change to a block affects all following ciphertext blocks
Problems
■ Issues with padding in MAC-then-encrypt use especially in TLS

(see 2013 TLS attacks)
□ check e.g. https://www.youtube.com/watch?v=ifVD8BqNONk for padding oracle attacks

[“Scalable Scanning and Automatic Classification of TLS Padding Oracle Vulnerabilities”, Usenix Security 2019]

■ Need Initialization Vector (IV)
□ which must be known to sender and receiver
□ if sent in clear, attacker can change bits of first block, and change IV to

compensate
□ hence IV must either be a fixed value (as in EFTPOS)

● same cleartext with same key → same ciphertext...
□ or must be sent encrypted in ECB mode before rest of message

https://www.youtube.com/watch?v=ifVD8BqNONk

Introduction to IT Security 115

Stream modes of operation

■ Block modes encrypt entire block

■ May need to operate on smaller units
□ real time data

■ Stream modes convert block cipher into stream cipher
□ cipher feedback (CFB) mode
□ output feedback (OFB) mode
□ counter (CTR) mode

■ Use block cipher as some form of pseudo-random number
generator

Introduction to IT Security 116

Stream cipher structure

Introduction to IT Security 117

Block cipher modes:
Counter (CTR)

■ A “new” mode, though proposed early on

■ Similar to OFB but encrypts counter value rather than any
feedback value

■ Must have a different key and counter value for every plaintext
block (never reused)
Oi = EK(i)
Ci = Pi XOR Oi

■ Uses: high-speed network encryption, encrypting data for random
access

Introduction to IT Security 118

Counter
(CTR)

Introduction to IT Security 119

Block cipher modes:
Advantages/Limitations of CTR

■ Efficiency
□ can do parallel encryptions in hardware or software
□ can preprocess in advance of need
□ good for bursty high speed links

■ Random access to encrypted data blocks

■ Provable security (as good as other modes)

■ But must ensure never to reuse key/counter values, otherwise
could break

Introduction to IT Security 120

Block cipher modes:
XTS-AES

■ New mode, for block oriented storage use
□ in IEEE Std 1619-2007

■ Concept of tweakable block cipher

■ Different requirements to transmitted data

■ Uses AES twice for each block
Tj = EK2(i) XOR αj

Cj = EK1(Pj XOR Tj) XOR Tj

where i is tweak (sector number) and j is block offset in sector
α is a special polynom (Galois field multiplication)

■ Each sector may have multiple blocks

■ (At least) 2 AES en-/decryption operations per block

Introduction to IT Security 121

Block cipher modes:
Advantages/Limitations of XTS

■ Efficiency
□ can do parallel encryptions in hardware or software
□ random access to encrypted data blocks

■ Has both nonce and counter

■ Addresses security concerns related to stored data

■ No authentication of data
■ Complications if sector size is not multiple of block size

Introduction to IT Security 122

Authenticated encryption Block cipher modes:
Counter with CBC-MAC (CCM)
■ CCM mode combines the well-known counter (CTR) mode of encryption with

the well-known CBC-MAC mode of authentication
□ variation of encrypt-and-MAC approach (see later for others)

■ Allows to use same block cipher with same key for ensuring confidentiality
and authenticity/integrity
□ all previous modes only provide confidentiality and need additional MAC (Message

Authentication Code) or digital signature to provide authenticity/integrity

■ Only requires encryption to be implemented, no decryption function
□ CCM currently only defined for block ciphers with 128 bit block size
□ RFC 3610 defines AES-CCM
□ designed by Russ Housley, Doug Whiting and Niels Ferguson

■ Currently used in wireless network standards
□ IEEE 802.11i (WiFi WPA2 with CCMP), e.g. NIST SP 800-38C
□ ZigBee
□ RFC 4309 defines use of AES-CCM for IPsec (not yet in widespread use)

■ Has been criticized for not being online and for being complex
□ see [Rogaway and Wagner 2003: “A Critique of CCM”]

Introduction to IT Security 123

Authenticated encryption Block cipher modes:
Galois Counter Mode (GCM)

■ Fast, online, not patented

■ Standardized for TLS, IPsec, and others

■ Implementation is difficult, but standard implementations widely
available (e.g. OpenSSL)
□ Intel AES-NI hardware instructions provide speed-up

■ Security is problematic with short MAC tags
□ TLS and IPsec define only 96 bits
□ see e.g. https://eprint.iacr.org/2016/475.pdf
□ easy to get implementation wrong, with potentially disastrous failure of

message authentication property when nonces are re-used:
http://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vul
nerable-to-forgery-attacks/

■ Avoid implementing it yourself!
□ if not completely sure about the implementation, avoid the mode

https://eprint.iacr.org/2016/475.pdf
http://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vulnerable-to-forgery-attacks/
http://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vulnerable-to-forgery-attacks/

Introduction to IT Security 124

Authenticated encryption Block cipher modes:
Offset Codebook Mode (OCB)

■ Fast, online, patented
■ Technically one of the best modes

□ https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-a
uthenticated-encryption/

■ Patent recently free to use for open source
□ http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm

■ Some of the patents expired in April 2016
□ https://pthree.org/2016/03/31/two-ocb-block-cipher-mode-patents-expir

ed-due-to-nonpayment/

https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/
https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
https://pthree.org/2016/03/31/two-ocb-block-cipher-mode-patents-expired-due-to-nonpayment/
https://pthree.org/2016/03/31/two-ocb-block-cipher-mode-patents-expired-due-to-nonpayment/

Introduction to IT Security 125

RC4

■ A proprietary cipher owned by RSA DSI designed by Ron Rivest

■ Variable key size, byte-oriented stream cipher
■ Previously widely used (older SSL/TLS, wireless WEP / WPA with

TKIP)

Executive summary: don’t use anymore. Really.

Introduction to IT Security 126

RC4 security

■ Some doubt for years, but only recently broken
□ [Nadhem AlFardan, Dan Bernstein, Kenny Paterson, Bertram Poettering, Jacob

Schuldt: “On the Security of RC4 in TLS and WPA” and “Biases in the RC4
keystream” (presentation at http://www.isg.rhul.ac.uk/tls/), Usenix 2013]

□ result is very non-linear

■ Since RC4 is a stream cipher, must never reuse a key
■ Have a concern with WEP, but due to key handling rather than

RC4 itself

■ Standard use in TLS now broken (see 2013 paper cited above)
→ don't use RC4 anymore!

■ Example of newer stream cipher: ChaCha20 (variant of Salsa20),
specified in RFC7539 (https://tools.ietf.org/html/rfc7539)

http://www.isg.rhul.ac.uk/tls/
https://tools.ietf.org/html/rfc7539

Introduction to IT Security 127

Public-key cryptography

■ Probably most significant advance in the 3000 year history of
cryptography

■ Uses two keys in the form of a keypair – a public and a private
key

■ Asymmetric since parties are not equal

■ Uses clever application of number theoretic concepts to function

■ Complements rather than replaces symmetric key cryptography

Introduction to IT Security 128

Why public-key cryptography

■ Developed to address two key issues:
□ key distribution – how to have secure communications in general

without having to trust a KDC (key distribution center) with your
symmetric/secret key

□ digital signatures – how to verify a message comes intact from the
claimed sender

■ Public invention due to Whitfield Diffie & Martin Hellman at
Stanford University in 1976 (article “New direction in
cryptography”)
□ known earlier in classified community

Introduction to IT Security 129

Public-key cryptography

■ Public-key/two-key/asymmetric cryptography involves the use of
two keys:
□ a public key, which may be known by anybody, and can be used to

encrypt messages, and verify signatures
□ a related private key, known only to the recipient, used to decrypt

messages, and sign (create) signatures

■ Infeasible to determine private key from public
□ Note: The reverse is typically easy

■ Infeasible to decrypt message or sign without knowing
private key

■ Is asymmetric because
□ those who encrypt messages or verify signatures cannot decrypt

messages or create signatures

Introduction to IT Security 130

Public-key cryptography

Related,
but not identical

Introduction to IT Security 131

Symmetric (secret/single-key) vs.
asymmetric (public-key)

Symmetric encryption
■ Needed to work

□ same algorithm with same
key

□ sender and receiver share key

■ Needed for security
□ single key must be kept secret
□ knowledge of algorithm +

samples of cipher-/plaintext
must be insufficient to
determine this secret key

Asymmetric encryption
■ Needed to work

□ same algorithm with pair of
keys (one to encrypt, one to
decrypt)

□ sender and receiver each
have a pair of keys

■ Needed for security
□ private part of keypair must

be kept secret
□ knowledge of algorithm +

public part of keypair +
samples of cipher-/plaintext
must be insufficient to
determine private key

Introduction to IT Security 132

Public-key cryptosystems

Introduction to IT Security 133

Public-key applications

■ Can classify uses into 3 categories:
□ encryption/decryption (provide confidentiality/secrecy)
□ digital signatures (provide authentication)
□ key exchange (of session keys)

■ Some algorithms are suitable for all uses (e.g. RSA), others are
specific to one (e.g. Diffie-Hellman only for key exchange, different
elliptic curve based algorithms for different purposes)

Introduction to IT Security 134

Public-key requirements

■ Public-key algorithms rely on two keys where:
□ it is computationally infeasible to find decryption key knowing only

algorithm and encryption key
□ it is computationally infeasible to en-/decrypt messages when the

relevant (en-/decrypt) key is not known
□ it is computationally easy to en-/decrypt messages when the relevant

(en-/decrypt) key is known
□ it is computationally easy to generate keypair
□ especially useful if either of the two related keys can be used for

encryption, with the other used for decryption (for some algorithms)

■ These are formidable requirements which only a few algorithms
have satisfied

Introduction to IT Security 135

Public-key requirements

■ Need a trapdoor one-way function

■ One-way function has
□ Y = f(X) easy
□ X = f–1(Y) infeasible

■ A trap-door one-way function has
□ Y = fk(X) easy, if k and X are known
□ X = fk

–1(Y) easy, if k and Y are known
□ X = fk

–1(Y) infeasible, if Y known but k not known

■ A practical public-key scheme depends on a suitable trap-door
one-way function

Introduction to IT Security 136

Security of public-key schemes

■ Like private key schemes brute force exhaustive search attack is
always theoretically possible

■ But keys used are too large (>= 2048 bits for classical, >= 256 bits
for elliptic curve variants)

■ Security relies on a large enough difference in difficulty between
easy (en-/decrypt) and hard (cryptanalysis) problems

■ More generally the hard problem is known, but is made hard
enough to be impractical to break

■ Requires the use of very large numbers
■ Hence is slow compared to private key schemes

Introduction to IT Security 137

RSA

■ By Rivest, Shamir & Adleman of MIT in 1977

■ Best known and widely used public-key scheme

■ Based on exponentiation in a finite (Galois) field over integers
modulo a prime
□ Note: exponentiation takes O((log n)3) operations (easy)

■ Uses large integers (e.g. 2048 bits)

■ Security due to cost of factoring large numbers
□ Note: factorization takes O(e log n log log n) operations (hard)

Introduction to IT Security 138

RSA key generation

■ Users of RSA must:
□ determine two primes at random - p, q
□ calculate n = p * q and φ=(p-1)*(q-1)
□ select either e or d (with special relation to φ) and compute the other

● e*d mod φ = 1

■ Primes p,q must not be easily derived from modulus n=p*q
□ must be sufficiently large
□ typically guess and use probabilistic test whether a prime

● if its not a prime and still passed the test → unlucky & insecure

■ Exponents e, d are inverses, so use inverse algorithm to compute
the other

Introduction to IT Security 139

RSA security

■ Possible approaches to attacking RSA are:
□ brute force key search - infeasible given size of numbers
□ mathematical attacks - based on difficulty of computing φ(n), by

factoring modulus n (hard without a quantum computer with sufficiently
many qbits...)

□ timing attacks - on running of decryption
□ chosen ciphertext attacks - given properties of RSA

Introduction to IT Security 140

Factoring problem

■ Mathematical approach takes 3 forms:
□ factor n=p*q, hence compute φ(n) and then d
□ determine φ(n) directly and compute d
□ find d directly

■ Currently believe all equivalent to factoring
□ have seen slow improvements over the years

● see e.g. https://en.wikipedia.org/wiki/RSA_Factoring_Challenge for challenge
(cash prices only active until 2007, but factoring still ongoing)

□ biggest improvement comes from improved algorithm
● cf. QS to GHFS to LS

□ currently assume >2048 bit RSA is secure, but don’t use less than 3072
for new use cases
● ensure p, q of similar size and matching other constraints

□ known to be computable efficiently with quantum computers (as soon as they
reach required qbit register size)

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Introduction to IT Security 141

RSA number Decimal digits Binary
digits

Cash prize offered Factored on

RSA-100 100 330 US$1,000 April 1, 1991[5]

RSA-110 110 364 US$4,429 April 14, 1992[5]

RSA-120 120 397 US$5,898 July 9, 1993[6]

RSA-129 129 426 US$100 April 26, 1994[5]

RSA-130 130 430 US$14,527 April 10, 1996

RSA-140 140 463 US$17,226 February 2, 1999

RSA-150 150 496 April 16, 2004

RSA-155 155 512 US$9,383 August 22, 1999

RSA-160 160 530 April 1, 2003

RSA-170 170 563 December 29, 2009

RSA-576 174 576 US$10,000 December 3, 2003

RSA-180 180 596 May 8, 2010

RSA-190 190 629 November 8, 2010

RSA-640 193 640 US$20,000 November 2, 2005

RSA-200 200 663 May 9, 2005

RSA-210 210 696 September 26, 2013[8]

RSA-704 212 704 US$30,000 July 2, 2012

RSA-220 220 729 May 13, 2016

RSA-230 230 762 August 15, 2018

RSA-232 232 768 February 17, 2020[9]

RSA-768 232 768 US$50,000 December 12, 2009

RSA-240 240 795 Dec 2, 2019[10]

RSA-250 250 829 Feb 28, 2020[11]

Introduction to IT Security 142

Timing attacks

■ Developed by Paul Kocher in mid-1990’s

■ Exploit timing variations in operations
□ e.g. multiplying by small vs large number
□ or IF's varying which instructions executed

■ Infer operand size based on time taken

■ RSA exploits time taken in exponentiation

■ Countermeasures
□ use constant exponentiation time
□ add random delays
□ blind values used in calculations

Introduction to IT Security 143

Chosen ciphertext attack

■ RSA is vulnerable to a Chosen Ciphertext Attack (CCA)

■ Attacker chooses ciphertexts and gets decrypted plaintext back

■ Choose ciphertext to exploit properties of RSA to provide info to
help cryptanalysis

■ Can counter with random pad of plaintext

■ Or best: use Optimal Asymmetric Encryption Padding (OASP)

Introduction to IT Security 144

Diffie-Hellman key exchange
(DH)

■ First public-key type scheme proposed

■ By Diffie & Hellman in 1976 along with the exposition of public key
concepts
□ note: now know that Williamson (UK CESG) secretly proposed the

concept in 1970
□ Ralph Merkle developed similar method independently, but published

only slightly later
● In 2002, Hellman suggested the algorithm be called Diffie–Hellman–Merkle

key exchange in recognition of Ralph Merkle's contribution to the invention of
public-key cryptography (Hellman, 2002).

■ Is a practical method for public exchange of a secret key

■ Used widely (in classical variant based on exponentiation in finite
field or more recently in Elliptic Curve variants)

Introduction to IT Security 145

Diffie-Hellman key exchange
(DH)

■ A public-key distribution scheme
□ cannot be used to exchange an arbitrary message
□ rather it can establish a common key
□ known only to the two participants (when only passive attacks are

assumed)

■ Value of key depends on the participants (and their private and
public key information)

■ Based on exponentiation in a finite (Galois) field (modulo a prime
or a polynomial) – easy

■ Security relies on the difficulty of computing discrete logarithms
(similar to factoring) – hard (without quantum computers)

Remember!

Introduction to IT Security 146

Diffie-Hellman setup

■ All users agree on global parameters:
□ large prime integer or polynomial q
□ a being a primitive root mod q

■ Each user (e.g. A) generates their key
□ chooses a secret key (number): xA < q
□ compute their public key: yA = a

xA mod q

■ Each user makes public that key yA

□ e.g. transmission to the communication partner in cleartext

Introduction to IT Security 147

Diffie-Hellman key exchange

■ Shared session key for users A and B is KAB:

KAB = a
xA.xB mod q

 = yA
xB mod q (which B can compute)

 = yB
xA mod q (which A can compute)

■ KAB is used as session key in private-key encryption scheme
between Alice and Bob

■ If Alice and Bob subsequently communicate, they will have the
same key as before, unless they choose new public-keys

■ Attacker needs an x, must solve discrete log

Introduction to IT Security 148

On-path attack (OPA)
(aka Man-in-the-Middle (MITM) attack)
1. Mallory prepares attack by creating two private / public keys
2. Alice transmits her public key to Bob
3. Mallory intercepts this and transmits his first public key to Bob.

Mallory also calculates a shared key with Alice
4. Bob receives the public key and calculates the shared key (with

Mallory instead of Alice)
5. Bob transmits his public key to Alice
6. Mallory intercepts this and transmits his second public key to Alice.

Mallory calculates a shared key with Bob
7. Alice receives the key and calculates the shared key (with Mallory

instead of Bob)
8. Mallory can then intercept, decrypt, re-encrypt, forward all

messages between Alice and Bob

Remember!

Introduction to IT Security 149

On-path attack

Source: https://commons.wikimedia.org/wiki/File:Man-in-the-middle_attack_of_Diffie-Hellman_key_agreement.svg

Remember!

Introduction to IT Security 150

Elliptic Curve Cryptography
(ECC)

■ Majority of public-key crypto (RSA, DH) use either integer or
polynomial arithmetic with very large numbers/polynomials

■ Imposes a significant load in storing and processing keys and
messages

■ An alternative is to use elliptic curves

■ Offers same security with smaller bit sizes

Introduction to IT Security 151

Comparable key sizes for equivalent
security

Symmetric scheme
(key size in bits)

ECC-based scheme
(size of n in bits)

RSA/DSA
(modulus size in bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

Introduction to IT Security 152

Zero knowledge proofs
■ Sometimes would like to prove knowledge of a secret without

revealing anything about that secret – including the identity of the
prover (signer)

■ Example 1: “prove that you know a password” → “password is X”
□ if verifier is malicious (or broken), can leak the secret

■ Example 2: signing petition by proving to be member of a group
(e.g. citizen of a country)
□ need to remain anonymous within that group
□ but standard asymmetric signatures reveal signer

● good if non-repudiability is desired (legal signatures)
● bad for privacy

■ Details
□ https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
□ https://blog.cryptographyengineering.com/2017/01/21/zero-knowledge-proofs-an-illustrated-primer-part-2/
□ https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
□ https://medium.com/witnet/spartan-zksnarks-without-trusted-setup-d117ded96e6f

https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2017/01/21/zero-knowledge-proofs-an-illustrated-primer-part-2/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://medium.com/witnet/spartan-zksnarks-without-trusted-setup-d117ded96e6f

Introduction to IT Security 153

(Cryptographic) Hash functions

■ Condenses arbitrary message to fixed size
h = H(M)

■ Hash used to detect changes to message

■ Want a public cryptographic hash function → ideally, this would
be a “random function” (mathematically defined e.g. as random
oracle), but cannot implement in practice that way

Requirements
□ H(x) is relatively easy to compute for any given x
□ one-way or pre-image resistant

● computationally infeasible to find x such that H(x) = h
□ second pre-image resistant or weak collision resistant

● computationally infeasible to find y ≠ x such that H(y) = H(x) (for a given x)
□ collision resistant or strong collision resistance

● computationally infeasible to find any pair (x, y) such that H(x) = H(y)

Introduction to IT Security 154

Cryptographic hash function

Introduction to IT Security 155

Security of hash functions
■ There are two approaches to attacking a secure hash function:

□ cryptanalysis
● exploit logical weaknesses in the algorithm

□ brute-force attack
● strength of hash function depends solely on the length of the hash code

produced by the algorithm

■ SHA (v2/v3) most widely used hash algorithm

■ Additional secure hash function applications:
□ passwords

● (slow + salted) hash of a password is stored by an operating system
□ intrusion detection

● store H(F) for each file on a system and secure the hash values
□ pseudorandom function (PRF) or pseudorandom number generator

(PRNG)

Introduction to IT Security 156

Hash functions & Message authentication
Message plus its hash are
encrypted
→ Modifications must create
two changes which also
have to match, which is
easy with stream ciphers

Message plus secret is
hashed
→ “Signature” of message
without symmetric or
asymmetric cipher

Cleartext message plus
encrypted hash
→ “Signature” of message
with symmetric/secret key,
but need block cipher with
appropriate block size

Message plus its hash
(including a secret) are
encrypted
→ Encrypted message plus
additional symmetric
“signature”

Non-repudiability
cannot be
guaranteed in
any of these
options!

Introduction to IT Security 157

Hash functions & digital signatures

Provide non-
repudiability

Like previous slide, but this
time with real (=asymmetric)
signature

Full Signature + encryption
(symmetric or asymmetric)

Introduction to IT Security 158

Secure Hash Algorithm (SHA-1)

■ SHA originally designed by NIST & NSA in 1993

■ Was revised in 1995 as SHA-1

■ US standard for use with DSA signature scheme
□ standard is FIPS 180-1 1995, also Internet RFC3174
□ nb. the algorithm is SHA, the standard is SHS

■ Based on design of MD4 with key differences: produces 160-bit
hash values

■ Since 2005 results on security of SHA-1 have raised concerns on
its use in applications, based on 2015 results (on-the-way
“freestart” collisions found) have to consider it broken in terms
collision-freeness

(And don’t even think about using MD4/5)

Introduction to IT Security 159

Revised SHA-2 standard

■ NIST issued revision FIPS 180-2 in 2002

■ Adds 3 additional versions of SHA
□ SHA-256, SHA-384, SHA-512

■ Designed for compatibility with increased security provided by the
AES cipher

■ Structure and detail is similar to SHA-1 → hence analysis should
be similar, but security levels are higher

Introduction to IT Security 160

New SHA-3 standard

■ SHA-1 needs to be considered broken now
□ https://sites.google.com/site/itstheshappening/ (paper at

https://eprint.iacr.org/2015/967 from Oct. 2015)
□ 2017: Two PDF documents, both valid, same SHA-1, different content

■ SHA-2 (esp. SHA-512) seems secure now, but may not remain
□ shares same structure and mathematical operations as predecessors
□ NIST competition for the SHA-3 next generation hash started in 2007

■ SHA-3 process started to replace SHA-2: same hash sizes, online

■ As of 2.10.2012, NIST announced that Keccak is now the SHA-3
standard after three rounds of selection
□ designed by team from Italy and (again, see Rijndael, ...) Belgium
□ different structure than SHA-2, therefore unlikely that cryptanalytic

attacks will influence both SHA-2 and SHA-3 at the same time
□ details: http://keccak.noekeon.org/

https://sites.google.com/site/itstheshappening/
https://eprint.iacr.org/2015/967
http://keccak.noekeon.org/

Introduction to IT Security 161

More (presumably) secure hash functions
exist

■ BLAKE3
□ based on ChaCha stream cipher design
□ suggested in 2020 to improve on BLAKE2 (from 2012) and BLAKE

(submitted to NIST competition in 2008 like Keccak)
□ compatible output sizes

● BLAKE-256 uses 32-Bit words internally, produces 256 bits digest
● BLAKE-512 uses 64-Bit words internally, produces 512 bits digest
● truncated versions for producing 224 and 384 bits

□ assumed to have similar security level to SHA-3, but significantly faster
● BLAKE3 internally uses a binary tree structure and thus parallelizes well

□ Argon2 uses BLAKE2b for password hashing
□ for details see https://github.com/BLAKE3-team/BLAKE3 and

https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf

■ Note: both SHA-3 (Keccak) and BLAKE2/3 are not susceptible to
length extension attack

https://github.com/BLAKE3-team/BLAKE3
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf

Introduction to IT Security 162

Performance comparison

[Figure taken verbatim from https://github.com/BLAKE3-team/BLAKE3]

Introduction to IT Security 164

Message Authentication Code (MAC)

■ A MAC is a cryptographic checksum
 MAC = CK(M)
□ condenses a variable-length message M using a secret key K to a fixed-sized

authenticator
□ depending on both message and (secret) key
□ like encryption though need not be reversible

■ Is a many-to-one function
□ potentially many messages have same MAC
□ but finding these needs to be very difficult

■ Appended to message as a signature (but both sides know the key!)

■ Receiver performs same computation on message and checks it matches
the MAC

■ Provides assurance that message is unaltered and comes from sender:
integrity and authenticity → protects against active attacks

■ Can use conventional cryptography with symmetric keys

Introduction to IT Security 165

Message authentication codes

Introduction to IT Security 166

Message authentication codes
■ As shown the MAC provides authentication

■ Can also use encryption for secrecy
□ generally use separate keys for each
□ can compute MAC either before or after encryption

● previously: is generally regarded as better done before
● currently: first encrypt, then MAC (because of padding attacks)

■ Why use a MAC?
□ sometimes only authentication is needed
□ sometimes need authentication to persist longer than the encryption

(e.g. archival use)
□ Encryption does, in the general case, not provide implicit integrity

protection (cf. stream cipher attack on cipher text)!

■ Note that a MAC is not a digital signature according to most
common usage of the term, because it does not offer non-
repudiability

Introduction to IT Security 167

Security of MACs

Like block ciphers have:

■ Brute-force attacks exploiting
□ strong collision resistance hash have cost 2m/2

● 128-bit hash is vulnerable, 160-bit better, but don’t use less than 256-bit
□ MACs with known message-MAC pairs

● can either attack keyspace (cf. key search) or MAC
● at least 256-bit MAC is needed for standard security level (Birthday attacks)

■ Cryptanalytic attacks exploit structure
□ like block ciphers want brute-force attacks to be the best alternative
□ more variety of MACs so harder to generalize about cryptanalysis

■ Need the MAC to satisfy the following:
□ knowing a message and MAC, is infeasible to find another message

with same MAC
□ MACs should be uniformly distributed
□ MAC should depend equally on all bits of the message

Introduction to IT Security 168

Keyed hash functions as MACs

■ Want a MAC based on a hash function
□ because hash functions are generally faster
□ crypto hash function code is widely available

■ Hash includes a key along with message

■ Original proposal:
KeyedHash = Hash(Key|Message)

□ some weaknesses were found with this, e.g. message extension
attack

■ Eventually led to development of HMAC

Introduction to IT Security 169

HMAC

■ Specified as Internet standard RFC2104

■ Uses hash function on the message:
HMACK(M)= Hash[(K+ XOR opad) ||
 Hash[(K+ XOR ipad) || M)]]
□ K is key padded with 0’s on right to block size of the hash function
□ opad/ipad: specified padding constants: 0x5C...5C / 0x36...36

■ Overhead is just one more hash calculation than the message
needs alone (= process three hash blocks more; two more than
simple version from previous slide)

■ Any hash function can be used
□ not: MD5, SHA-1, RIPEMD-160, Whirlpool,
□ use: SHA-2, SHA-3, BLAKE2, BLAKE3

Introduction to IT Security 170

HMAC overview

Introduction to IT Security 171

Authenticated encryption combinations

■ Simultaneously protect confidentiality and authenticity of
communications
□ often required but usually separate

■ Approaches:
□ hash-then-encrypt: E(K, (M || H(M))
□ MAC-then-encrypt: E(K2, (M || MAC(K1, M))

→ Padding Oracle and Vaudenay attack (S. Vaudenay: “Security Flaws
Induced by CBC Padding Applications to SSL, IPSEC, WTLS, …”)
http://codeinsecurity.wordpress.com/2013/04/05/quick-crypto-lesson-why-mac-then-encrypt-is-bad/
http://www.thoughtcrime.org/blog/the-cryptographic-doom-principle/

□ encrypt-then-MAC: (C=E(K2, M), T=MAC(K1, C))
□ encrypt-and-MAC: (C=E(K2, M), T=MAC(K1, M))

□ best to use an AEAD mode (e.g. OCB, CCM, GCM) to combine
encryption and MAC in one step and avoid this decision!

■ Decryption / verification straightforward

Introduction to IT Security 172

Blockchain

■ Data structure based on hashes
□ next block includes top-level hash

of previous block → chaining of blocks
□ each block contains (hashes to) data plus some meta-data (e.g. timestamp)

■ If last block hash is trusted, can verify all preceding blocks

■ Questions for practical use:
□ Where to store all blocks?

● Bitcoin uses peer-to-peer network to distribute new blocks, every node stores
whole chain

□ How to update last hash pointer, i.e. how to select newest block?
● Bitcoin uses proof-of-work by having to brute-force hash challenges (cf. Nonce)

■ Details:
□ https://cs251.stanford.edu/
□ https://github.com/matthewdgreen/blockchains/wiki/Course-Syllabus-2020

Source of figure: https://commons.wikimedia.org/wiki/File:Bitcoin_Block_Data.svg

https://cs251.stanford.edu/
https://github.com/matthewdgreen/blockchains/wiki/Course-Syllabus-2020

Introduction to IT Security 173

Bitcoin energy use

Source: https://digiconomist.net/bitcoin-energy-consumption

Introduction to IT Security 174

(2020)

Introduction to IT Security 175

(2021)

Introduction to IT Security 176

Random numbers

■ Keys for public-key algorithms

■ Stream key for symmetric stream cipher

■ Symmetric key for use as a temporary session key or in creating a
digital envelope

■ Handshaking to prevent replay attacks

■ Randomizing encrypted/MACed messages to make
traffic/message analysis harder

Introduction to IT Security 177

Random number
requirements

Randomness
■ Uniform distribution:

frequency of occurrence of
each of the numbers should
be approximately the same

■ Independence: no one value
in the sequence can be
inferred from the others

Unpredictability
■ Each number is statistically

independent of other numbers
in the sequence

■ Opponent should not be able
to predict future elements of
the sequence on the basis of
earlier elements

Introduction to IT Security 178

Random versus
pseudorandom

■ Cryptographic applications typically make use of algorithmic
techniques for random number generation
□ algorithms are deterministic and therefore produce sequences of

numbers that are not statistically random

■ Pseudorandom numbers are:
□ sequences produced that satisfy statistical randomness tests
□ likely to be predictable

■ True Random Number Generator (TRNG):
□ uses a nondeterministic source to produce randomness
□ most operate by measuring unpredictable natural processes

● e.g. radiation, gas discharge, leaky capacitors, resistor noise
□ increasingly provided on modern processors

Introduction to IT Security 179

Entropy

From Wikipedia articles:

■ “In thermodynamics, entropy (usual symbol S) is a measure of the
number of specific ways in which a thermodynamic system may be
arranged, commonly understood as a measure of disorder.”

■ “In information theory, (Shannon) entropy is the average amount of
information contained in each message received. Here, message stands
for an event, sample or character drawn from a distribution or data
stream.”

■ In computing, entropy is the randomness collected by an operating
system or application for use in cryptography or other uses that require
random data.”

In most cases, entropy means "disorder" or “uncertainty”

Introduction to IT Security 180

Key management

Require secure key management for symmetric cryptography
■ Initial key exchange

□ transfer
□ verification

■ Update

■ Revoke

And all of these steps can be hard!

Introduction to IT Security 181

Why key management?

■ Only provably secure encryption: one-time pad (OTP)

■ But: key length = plain text length, and key is not re-usable

■ Thus: impractical key management

■ Symmetric encryption is the first step towards solving the key
management problem: to shorten the key which needs to be
kept secret.

Introduction to IT Security 182

Shortening the key

■ Transferring the key over Internet connections to create secure
connections

■ ... over insecure channels
 ⇒ Chicken-and-egg problem

■ Why not try to shorten the key itself by encrypting it with a shorter
key?

■ Because this would lower the entropy
 ⇒ require different (out-of-band) mechanism for key management

Introduction to IT Security 183

Key management methods

■ Classical courier-suitcase-handcuffs scenario
□ maybe slightly expensive...

■ Paper + (ground/snail) mail
□ PIN and TAN codes

■ Telephone
□ slow, error prone, and insecure
□ compromise between usability and security

■ Other out-of-band channels
□ cable, laser, infra red, ultra sound, etc.
□ quantum “cryptography” → please call it QKD (quantum key distribution)

■ Asymmetric cryptography

Introduction to IT Security 184

Hybrid cryptography system
■ Combination of symmetric and asymmetric cryptography

□ symmetric: fast for bulk data encryption
□ asymmetric: (public) keys do not have to be kept and transmitted in

secret

■ Session keys
□ exchanged/established/managed by asymmetric cryptography
□ used as secret keys for symmetric cryptography

■ Two ways to create session keys
□ establish using Diffie-Hellman key exchange
□ one party creates session key as random bit string, encrypted with

public key of other party, optionally signed with private key of first party,
and transmitted over insecure channels

■ Session keys should not be re-used!
□ exception: “key continuation” methods (e.g. ZRTP)
□ but: better apply key continuation to symmetric “master” keys or to

public keys

Introduction to IT Security 185

Key hierarchy

■ Typically have a hierarchy of keys

■ Session key
□ temporary key
□ used for encryption of data between users
□ for one logical session then discarded

■ Master key
□ used to encrypt session keys
□ can be either asymmetric or symmetric (if other means for out-of-band

transfer exist)

Introduction to IT Security 186

Key hierarchy

Introduction to IT Security 187

Hybrid system:
digital envelope

Introduction to IT Security 188

Public-key certificates

■ Certificates allow key exchange without real-time access to public-
key authority

■ A certificate binds identity to public key
□ usually with other info such as period of validity, rights of use, etc.

■ With all contents signed by a trusted Public-Key or Certificate
Authority (CA)

■ Can be verified by anyone who knows the public-key authorities
public-key

■ Examples: standard Public Key Infrastructure / CA companies
□ Verisign
□ Thawte
□ Let’s Encrypt
□ ...

Introduction to IT Security 189

Public-key certificates

Digest

Signing

Verify+Compare

??Signature

CertInstance
Private Key

Certificate

Begins on: <date>
Expires on: <date>

Common Name: ins.jku.at
 Public Key: <INS-PublicKey>

…: …

Signed by: <CertInstance>
with Public Key: <Cert-PublicKey>

…: …

Digest

Introduction to IT Security 190

X.509 certificates

■ Issued by a Certification Authority (CA), containing:
□ version V (1, 2, or 3)
□ serial number SN (unique within CA) identifying certificate
□ signature algorithm identifier AI
□ issuer X.500 name CA
□ period of validity TA (from - to dates)
□ subject X.500 name A (name of owner)
□ subject public-key info Ap (algorithm, parameters, key)
□ issuer unique identifier (v2+)
□ subject unique identifier (v2+)
□ extension fields (v3)
□ signature (of hash of all fields in certificate)

■ Notation CA<<A>> denotes certificate for A signed by CA

Introduction to IT Security 191

X.509 certificates

Introduction to IT Security 192

CA hierarchy

■ If both users share a common CA then they are assumed to know
its public key

■ Otherwise CAs must form a hierarchy

■ Use certificates linking members of hierarchy to validate other CAs
□ each CA has certificates for clients (forward) and parent (backward)

■ Each client trusts parents certificates

■ Enable verification of any certificate from one CA by users of all
other CAs in hierarchy

Introduction to IT Security 193

CA hierarchy use

Introduction to IT Security 194

Certificate revocation

■ Certificates have a period of validity
■ May need to revoke before expiry, e.g:

□ user's private key is compromised
□ user is no longer certified by this CA
□ CA's certificate is compromised

■ CAs maintain list of revoked certificates
□ the Certificate Revocation List (CRL)

■ Users should check certificates with CA’s CRL

■ Still one of the biggest problems of PKIs

Introduction to IT Security 195

Problems with PKIs

■ All CAs can certify all hostnames/domains
□ a single weak CA can break the whole PKI system
□ has happened in the past (see e.g. Comodo, DigiNotar, CNNIC, WoSign,

TrustCor, ...)

■ All CAs are equally trusted in the browsers (and other clients)
□ currently impossible to define which CAs are trusted by a client for

Extended Validation (EV) and which are not
□ no mandatory standard to define which CAs are trusted for which

domains/countries/etc. and which are not → RFC 6844 “DNS Certification
Authority Authorization (CAA) Resource Record” from 2013 can be used
optionally

□ but can remove a CA manually (=untrusted subtree)

■ Many/most CAs only verify access to an email address for handing
out certificates

■ See e.g. http://lwn.net/SubscriberLink/663875/8e3238297b986190/

http://lwn.net/SubscriberLink/663875/8e3238297b986190/

Introduction to IT Security 196

Partial solutions:
Certificate pinning

■ Certificate pinning allows to declare a binding between a server
and a specific server certificate or a CA which is supposed to issue
certificates for that server
□ can be implemented on the client (e.g. mobile app)
□ or server can instruct browser to pin with HKPK extension

→ also use HSTS to tell browsers to always use HTTPS instead of
plain HTTP

□ tries to prevent misuse of malicious certificates for a server connection

■ Certificate transparency tries to find different certificates being
seen in the wild for the same server (also see various plugins for
browsers for similar purpose) – orthogonal to pinning as a
detection method

Introduction to IT Security 197

Partial solutions:
DANE

■ DANE (DNS-based Authentication of Named Entities) allows
embedding X.509 certificates into DNS records
□ allows clients to query DNS for the certificates
□ if combined with DNSSec, can partially replace current PKI system (not

for Extended Validation certificates)
□ can be combined with current PKI system by specifying CA allowed to

issued certificates (certificate pinning in DNS)
□ See current RFC 6844 (https://tools.ietf.org/html/rfc6844)

■ New CA effort: https://letsencrypt.org/
□ allows automatic (and free) provisioning of certificates to servers

based on information from DNS and the web server itself
□ simple command-line tools to manage certificates directly on servers
□ automation is good → when it’s done regularly, it is known to work!

https://tools.ietf.org/html/rfc6844
https://letsencrypt.org/

Introduction to IT Security 198

TLS server best operations practices

■ Use certificates with secure hashes → SHA-256 or better

■ Stay up-to-date with cipher suites (no RC4, no AES-CBC, no DH
with <= 1024 Bits, …)

■ If possible, keep private key on HSM (hardware security module)

■ Patch/update HTTP server versions and crypto libraries whenever
security updates are released

■ … and many more
Hint: check your servers (and browsers) with
https://www.ssllabs.com/ssltest/ - many good tips to improve

https://www.ssllabs.com/ssltest/

Introduction to IT Security 199

Web of Trust (WoT)

■ Alternative to PKI
□ no single root certificate
□ no distinction between user and CA certificates
□ users can “certify” other users

→ “I have verified that this public key belongs to the user with this name.”
□ special users may act as certification /

registration authorities

Introduction to IT Security 200

Updating keys

Encryption and authentication keys need to be updated
periodically
■ When a maximum number of messages/bytes has been secured

with the session key (statistical attacks, cryptanalysis)

■ After a maximum lifetime (brute force attacks)

■ After compromise
Possibilities
■ Symmetric: just use a completely new key (re-keying)

→ all the previous applies

■ Asymmetric: Need to re-transmit authentic public key (not likely)

Current best standard: Signal protocol, Noise as more generic version

Introduction to IT Security 201

Revoking keys

Asymmetric keys
■ When a private key has been compromised (it is no longer private)

or no longer in use

■ Lifetimes of (self-) certificates

■ Certificate revocation lists (CRLs)

■ Online status checking (OCSP)

→ One of the largest problems of PKIs, still practically unsolved

	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201

