
J O H A N N E S K E P L E R
U N I V E R S I T Ä T L I N Z

N e t z w e r k f ü r F o r s c h u n g , L e h r e u n d P r a x i s

A New Approach to a Fast Simulation of Spiking
Neural Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

DIPLOMINGENIEUR

in der Studienrichtung

INFORMATIK

Angefertigt am Institut für Systemtheorie

Betreuung:

o. Univ.-Prof. Ing. Dr. Franz Pichler

Eingereicht von:

Rene Mayrhofer

Mitbetreuung:

Dipl.-Ing. Dr. Michael Affenzeller

Linz, Juli 2002

Johannes Kepler Universität
A-4040 Linz · Altenbergerstraße 69 · Internet: http://www.uni-linz.ac.at · DVR 0093696





Kurzfassung

Spikende Neuronale Netzwerke werden aufgrund ihrer verbesserten Flexibilität und
erhöhten Anzahl von Freiheitsgraden gerne als ein neues Berechnungs-Paradigma an-
gesehen – sie stellen den direkten Nachfolger der Künstlichen Neuronalen Netzwer-
ke dar. Obwohl die Eigenschaften dieses neuen Typs Neuronaler Netzwerke derzeit
nur in begrenztem Maße bekannt sind, ist er dennoch eindeutig leistungsfähiger als
sein Vorgänger; außer der möglichen Simulation Künstlicher Neuronaler Netzwerke
in Echtzeit können neue, zuvor unbekannte Berechnungselemente in der Modellie-
rung verwendet werden. Allerdings erfordern aktuelle Implementierung zur Simula-
tion Spikender Neuronaler Netzwerke bisher den Einsatz kontinuierlicher Simulati-
onstechniken, durch die Skalierbarkeit auf große Netzwerke mit vielen Neuronen er-
schweren.

Diese Diplomarbeit führt ein neues Modell für Spikende Neuronale Netzwerke ein,
welches die Anwendung von schneller, diskreter ereignisbasierter Simulation er-
laubt; dadurch entstehen möglicherweise enorme Vorteile in Flexibilität und Ska-
lierbarkeit, ohne die qualitative Berechnungsleistung zu mindern. Das neue Modell
wurde außerdem in einem Plattform-unabhängigen, in Java geschriebenen Prototyp-
Simulationsframework implementiert. Durch die ausschließliche Verwendung diskre-
ter ereignisbasierter Simulation beweist das Framework die Funktionsfähigkeit des
neuen Konzepts – es wurde bereits erfolgreich zur Emulation von Standardtypen
Künstlicher Neuronaler Netzwerke sowie zur Simulation eines biologisch inspirier-
ten Filter-Modells eingesetzt. Die Resultate dieser Simulationen werden in folgenden
Kapiteln präsentiert und mögliche Richtungen für zukünftige Weiterentwicklungen an-
gegeben. Zusätzlich werden einige erweiterte Techniken bezüglich des Einsatzes dis-
kreter ereignisbasierter Simulation angegeben, um die durch das neue Konzept ent-
standenen Möglichkeiten nutzen zu können.



Abstract

Spiking Neural Networks are considered as a new computation paradigm, representing
the next generation of Artificial Neural Networks by offering more flexibility and de-
grees of freedom for modeling computational elements. Although this type of Neural
Networks is rather new and there exists only a vague knowledge about its features, it
is clearly more powerful than its predecessor, not only being able to simulate Artifi-
cial Neural Networks in real time but also offering new computational elements that
were not available previously. Unfortunately, the simulation of Spiking Neural Net-
works currently involves the use of continuous simulation techniques which do not
scale easily to large networks with many neurons.

In this diploma thesis, a new model for Spiking Neural Networks is introduced; it
allows the use of fast discrete event simulation techniques and possibly offers enor-
mous advantages in terms of simulation flexibility and scalability without restricting
the qualitative computational power. As a proof of concept, the new model has been
implemented in a prototype simulation framework, written platform-independently in
Java. This simulation framework utilizes solely discrete event simulation and has been
successfully used to emulate typical Artificial Neural Networks and to simulate a bi-
ologically inspired filter model. The results of the conducted example simulations are
presented and possible directions for future research are given. Additionally, a few ad-
vanced techniques regarding the use of discrete event simulation, which offers some
new opportunities, are shortly discussed.
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Chapter 1

Introduction and Overview

Currently the technology of Neural Networks is undergoing a change; a new generation
of Neural Networks is on the verge of becoming important for theoretical considera-
tions as well as practical applications. At the moment, Neural Networks are success-
fully used for several application domains in computer science, typically for: pattern
recognition such as speech recognition, speaker recognition, face recognition, etc.; pat-
tern classification such as quality assurance, stock index prognosis, creditworthiness
rating, etc. Such networks are formal computational models inspired by biological
Neural Networks like the human brain. But recent biological evidence led to the con-
clusion that current Artificial Neural Networks (ANNs) may not be very well suited
for fast information processing [TFM96], which is needed when trying to recognize or
classify live data input. One of the reasons might be that current ANNs model only one
aspect of the information transmissions which take place in natural Neural Networks,
namely the firing rate of Neurons [Zel94]. However, biological experiments showed
that the visual system in the human brain transmits at least some information in the ex-
act timing of single electrical impulses, known as spikes. When averaging over those
spikes for computing the firing rate, much of the encoded information will be lost.
To model the temporal aspect of information transmission, Spiking Neural Networks
(SNNs) have been developed; this mathematical model of Neural Networks explicitly
models the exact timing of single spikes. Unfortunately current techniques for sim-
ulating SNNs need too much computing power to be used in practical applications
where computation is in the main point of view, creating the need for better simulation
techniques of this mathematical model.
At the moment, there exist a few simulation tools that can be used to model and sim-
ulate SNNs; among the most popular is GENESIS, the General Neural Simulation
System [BB94]. But this system has been developed to simulate the basic elements
known in neuro-science at a level of great detail, modeling each neuron with possibly
multiple sections, named compartments, and modeling the compartment behavior with
neuro-electrical equations. Thus, it is well suited to simulate the biological behavior
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very closely, allowing neuro-biologists to conduct research on the level of single neu-
rons or few interconnected neurons. However, Neural Networks in computer science
applications – also in embedded systems hiding their usage – are used at another level
of abstraction; these different models of SNNs can be seen as a multi-strata system
[MT75] (also cf. [Pic00a]). GENESIS implements a model that lies beneath the level
of topology, behavior and learning. It can be used to simulate this level, but it was
not developed for this purpose and is therefore just barely qualified for it. To conduct
research on the topology, behavior and learning of SNNs, which is the “computer-
science and information theory level” as opposed to the “neurobiology level”, more
abstract models are needed. Under this circumstance, it is more important to simulate
large populations of neurons together with their interactions than to simulate single
neurons in detail.
In order to do so, this diploma thesis tries to utilize the technique of discrete event sim-
ulation [ZPK00] – by approximating all used functions with piecewise linear functions
– to compute SNNs, possibly offering an enormous increase in both simulation speed
and scalability. Using discrete event simulation, only those parts of an SNN that are
active at a given time need to be simulated, concentrating on the important points of
the simulation and thus allowing the simulation of larger and more sophisticated Neu-
ral Networks. Within the present thesis, the aim is to construct a prototype simulation
framework that can be used to easily conduct simulations of SNNs by only defining
the network structure. The increase in simulation flexibility, speed and scalability shall
enable the use of the next generation of Neural Networks – the Spiking Neural Net-
works – in practical applications, offering more potential for self-learning behavior in
commonly used soft- and hardware tools.

In chapter 2 the theoretical foundations on which this thesis builds upon are introduced.
After summarizing the history of the development of Neural Networks and giving a
motivation for research on SNNs, the most important, currently used models for SNNs
and discrete event simulation are presented. Although, for the first time these models
were introduced nearly 10 years ago, to the author’s best knowledge, this seems to be
the first attempt to unify them – to apply discrete event simulation to SNNs. A formal
model allowing this application, which has already been presented in [MAP+02], is
thoroughly introduced in chapter 3. One of the basic abstractions which allows effi-
cient simulation is the usage of piecewise linear functions. To allow formal statements
in the new model, a special notation for calculations with piecewise linear functions is
presented, followed by the respective formulation of the functions used in the model of
SNNs. Since the main task in discrete event simulation is to calculate the times when
events arise, an algorithm for calculating neuron firing times in linear time complexity
has been developed. This formal model is completed by the description of coding con-
verters at the network in- and outputs and a discussion about first learning algorithms.
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Since the second aim of this diploma thesis – in addition to the development of the
aforementioned formal model – is the creation of a prototype simulation framework;
this implementation of the model in Java code is described in chapter 4. However,
the description is restricted to the structural and functional concepts, details are only
shown where appropriate and necessary for an understanding of the inner concepts.
A detailed description of all implemented components can be found in the form of
Javadoc documentation, which is generated directly from the augmented Java source
code and is accompanying this diploma thesis. Currently, the prototype simulation
framework implements the handling of spike events at the neuronal and synaptic layer
and enables to build networks of neurons and synapses. Furthermore, it contains visu-
alization components to gain an overview of the inner network operations. Even though
the framework currently is only in the state of being a prototype and mostly acts as a
proof of concept, it already works very well for some example simulations and is well
suited as the base for conducting research on discrete event simulation of SNNs. Based
on the MOSAIC simulation framework and written in the Java programming language,
the prototype simulation framework is completely independent of the hardware and the
operating system – but currently not especially optimized with respect to running time.
The developed prototype simulation framework was used to perform a few simulations
of SNNs with discrete event simulation. The structure and results of these examples
are presented in chapter 5; four different examples have been constructed to show the
capabilities of the simulation framework. After that, a few ideas on the future devel-
opment are given in chapter 6: First of all, it might be advantageous to apply sys-
tem theoretical methods to SNNs by constructing them in a hierarchical way, forming
components from simpler parts with clearly defined input and output behavior. This ap-
proach might help in mastering the complexity of large and powerful Neural Networks.
Then, to make learning algorithms more flexible and possibly better in solving given
problems, the support to create and remove simulation components during run-time
is explained. Because the simulation of large SNNs in real time might not be possi-
ble on current single processor systems, a few approaches on parallelizing the discrete
event simulation are summarized. Finally, a short discussion about the application of
learning algorithms that use only locally available information and their relation to the
biological interpretation completes this terse list of ideas for possible future research
topics.
Chapter 7 then gives a summary of the whole thesis by drawing conclusions and
presents a more speculative future perspective concerning the usage of SNNs.

It should be pointed out that this diploma thesis is not about neurobiology. Although
some details of the biological model of Neural Networks are presented and Spiking
Neural Networks are inspired by biology, the main interest stems from computer sci-
ence and information technology – to show what can be done with biologically in-
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spired computational models. Many of the details from biological models have been
intentionally abstracted to allow a shift to a higher level, where the simulation of large
populations of neurons is possible with current computing resources.
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Chapter 2

Theoretical Foundations for Spiking
Neural Networks

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are systems for information processing, modeled
after biological Neural Networks like the human brain. All Neural Networks share a
common characteristic: the use of a large number of simple, connected information
processing elements (called neurons) forming a network. The strength of all Neural
Networks lies in their connections, which contain the stored information and form the
processing structure of the system. Another major feature of Neural Networks is their
ability to learn. Although Neural Networks act as an information processing system,
they typically cannot be “programmed” or “parameterized” [Zel94].
Instead of this, Neural Networks learn their behavior. This learning can be performed
using either supervised methods, giving the Neural Networks input values and also the
respective desired output values, or unsupervised methods where the Neural Network
classifies input values on its own. During the learning process, a typical Neural Net-
work not only stores the presented input patterns to recognize them in the future, but
also accomplishes a generalization such that untrained input patterns that are close to
trained ones can also be recognized. There are quite some advantages of Neural Net-
works in contrast to conventional algorithms (some items were taken from [Zel94]),
due to which they are a widely accepted and successful computational element:

• As already mentioned, Neural Networks have the ability to learn, enabling them
to compute functions for which no formal, mathematical representation is cur-
rently known. In addition, they are able to represent any function, simple or
complex, linear or non-linear; they are universal approximators [Kol57].

• Additionally, they are more fault-tolerant than other algorithms because small
changes in the input values normally cause no changes in the output values at
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all. Neural Networks can also adapt to the failure of single or multiple Neurons,
allowing the whole system to still be efficient enough when some parts fail.

• Furthermore, due to their inherently parallel nature, very high computational
rates can be achieved when Neural Networks are implemented directly in hard-
ware or simulated using parallel algorithms (see section 6.3).

• Another major advantage for some applications is that information in Neural
Networks is stored associatively; i.e. it is much simpler to recall a pattern that is
close to the input pattern than it would be with random memory machines.

• Due to the automatic classification and generalization of input patterns (that
some Neural Network types are capable of), sensible default values are auto-
matically chosen for incompletely specified input patterns.

But, as helpful Neural Networks are in some situations, they also have some disadvan-
tages:

• A Neural Network typically behaves as a black box in the system theoretical
sense [PS90]; when given an input value, the network produces an output value.
But in the general case it will not be possible to deduce the behavior of the net-
work from its internal parameters without completely simulating it. This makes
it difficult, if not even impossible, to validate Neural Networks for their correct-
ness in solving a given problem.

• Gaining knowledge within a Neural Network is – in many cases – impossible
without using time-intensive learning algorithms. Currently there are only a few
approaches for equipping Neural Networks with “instincts” (see [SO01]); these
would be a kind of basic knowledge that help the Neural Networks in the early
stages of their learning.

• Currently, almost all of the recently used learning algorithms (including the
Backpropagation learning rule) are slow in spite of many optimizations.

Due to these reasons, Neural Networks should not be used for applications where good
deterministic solutions already exist. However, there are many application domains in
which either no deterministic solution is currently known (or in which no such solution
is possible due to some intrinsic properties) or in which the deterministic solution is
not feasible (e.g. due to running time).

There are a few motivations for theoretical research on Neural Networks. An obvious
one is to achieve a deeper understanding of the behavior of biological systems by trying
to reproduce some effects in simulations. Another motivation is that ANNs can learn
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from given input and output values, therefore enabling the system to calculate func-
tions for which no mathematical representation is known. A less obvious motivation
for research on Neural Networks, mainly from computer science and complexity the-
ory, lies in the fact that they are massively parallel systems that can be seen as parallel
algorithms. But one of the main goals and possibly the driving force for many research
projects might still be the vision of an intelligent machine; Neural Networks seem to
be the formal model that could supposedly be able to reproduce the “intelligence” and
“consciousness” of a human brain, however we choose to define these terms.
Depending on the motivation for looking at Neural Networks, different features will be
significant. If the system is to be used as a simulator for studying effects in biological
systems, it will be essential that the artificial neurons act like their biological counter-
parts as closely as possible. In contrast, if human psychology or complexity theory is
the main point of view, then the properties of single neurons might not be as important
as the number of neurons in the system and the connection structure (the topology)
of the network. However, within this diploma thesis, the focus is not research on bio-
logical Neural Networks. Instead, the focus is on showing that the next generation of
ANNs, the Spiking Neural Networks (SNNs) can offer advantages for almost all points
of view, making them an effective successor of ANNs in current applications.

2.1.1 History

The history of (artificial) Neural Networks is almost as long as the history of pro-
grammable computers built of transistors. The first papers dealing with ANNs were
written over 50 years ago, forming a base that is still used in current research.
This short summary of the development of ANNs is a summary of the respective chap-
ter in [Zel94], extended by the history of SNNs.

• Early beginnings (1942 – 1955): As early as 1943 the essay “A logical calcu-
lus of the ideas immanent in nervous activity” was written by Warren McCul-
loch and Walter Pitts, describing a first form of Neural Networks based on the
“McCulloch-Pitts” neuron. It also showed that even simple classes of Neural
Networks are in principle able to calculate arbitrary arithmetic or logical func-
tions. Although no practical application was given in this document, it had an
influence on other, later famous researchers including Norbert Wiener and John
von Neumann. Pitts and McCulloch wrote another article named “How we know
universals” in 1947, in which they discussed the problem of recognizing spatial
patterns invariant of their position.
In 1949 Donald O. Hebb described the classical Hebbian learning rule in his
book “The Organization of Behaviour”. It represents a simple concept of learn-
ing for individual neurons. Hebb also used this rule for arguing results from
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psychological experiments. In its universal form, this learning rule is the basis
for almost all known learning methods in the context of Neural Networks. Also
the concept of cell assemblies, which are laterally connected, mutually exciting
subsets of neurons, traces back to Hebb.
Karl Lashley, a neuro-physiologist, stated in 1950 in his work “In search of the
engram” the thesis that information in the brain must be stored in a distributed
representation. He came to this conclusion by conducting experiments on rats.
In these experiments, only the extent and not the position of the destruction of
neural cells determined the ability to run through a labyrinth. Although today the
idea of a fully distributed information storage has been discarded and we know
that the brain features functionally distinguishable areas, his work had a lot of
influence on the following research.

• First successes (1955 – 1969): The first successful neuro-computer “Mark I Per-
ceptron” was built in the years 1957–1958 by Frank Rosenblatt, Charles Wight-
man and employees at the MIT. It was used for pattern recognition problems
and was able to recognize simple numbers with a 20*20 pixel optical sensor.
Although Marvin Minsky had already developed a neuro-computer with auto-
matically adjusting weights in 1951 (“Snark”, which he used in his PhD thesis
in 1954), “Mark I Perceptron” had 512 motor-driven potentiometers for his vari-
able weights. Besides this technical achievement, Frank Rosenblatt became gen-
erally known for his book “Principles of Neurodynamics”, which was published
in 1959. In this book he describes different variations of the perceptron and also
shows a proof that a perceptron can learn every function that can be possibly
represented with the network by applying his learning method.
In 1958, Oliver Selfridge presented in his work “Pandemonium” dynamic, inter-
active mechanisms for solving the practical problem of Morse-Code translation
using models of human information transmission and the hill climbing learning
method.
Karl Steinbruch showed in 1961 in his work “Die Lernmatrix” simple technical
realizations of associative memory, the predecessor of today’s neural associative
memory. They were constructed as technical realizations of Pawlow’s condi-
tional reflexes. Besides a binary model there was also a model for continuous
input and learning methods for both models.
Bernard Widrow formed some time after 1960 the Memistor Corporation, the
first neuro-computing company. This company produced memistors, elements
like transistors but for realizing the adjustable weights of an ANN.
In the period between 1955 and 1969, researchers thought that the basic princi-
ples of self-learning, “intelligent” systems have been discovered. This overesti-
mation, particularly in the media, led to the following intermission in popularity
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as soon as the limits of the used models and learning methods became clear.

• The silent years (1969 – 1982): In 1969 Marvin Minsky and Seymour Pa-
pert conducted a detailed mathematical analysis of the perceptron and showed
that this model is unable to represent many important problems at all. Using a
few very simple problems like the XOR-problem, the parity-problem and the
connectivity-problem they were able to show that the pristine perceptron as well
as different variants are inherently unable to solve these and related problems.
They also concluded that even more powerful models than the perceptron would
have the same problems and that Neural Networks would be a dead-end. Fortu-
nately, this conclusion is not correct according to today’s point of view. But at
a time of stagnation in the field of Neural Networks, this statement caused that
researchers who were working on Neural Networks did not receive any funding
for the next 15 years.
Although there were no real breakthroughs during this time, some famous re-
searchers were able to build up a lot of the theoretical foundations that Artificial
Neural Networks are based on today.
E.g. Teuvo Kohonen introduced in 1972 in his work “Correlation matrix mem-
ories” a model of a linear associator (a special associative memory) that uses
linear activation functions and continuous values for weights, activation values
and outputs.
In 1974 Paul Werbos developed the backpropagation learning method in this
PhD thesis (which was used about 10 years later due to work by Rumelhart and
McClelland).
Stephen Grossberg published a number of papers, including a work on the prob-
lem of letting a Neural Network learn new patterns without destroying already
learned ones. He was one of the first to use sigmoidal activation functions and
nonlinear lateral inhibition. His models of Adaptive Resonance Theory (ART)
are best known.
John Hopfield, a well-known physicist, wrote his article “Neural Networks and
physical systems with emergent collective computational abilities” in 1982,
describing binary Hopfield-networks as the neural equivalent to Ising-models
in physics. Two years later he enhanced his model to continuous Hopfield-
networks.
Teuvo Kohonen got known especially for his self-organizing maps (SOMs),
which he described in this article “Self-organized formation of topologically
correct feature maps” in 1982.

• Renaissance (1985 – today): In the early eighties the field of Neural Networks
was revived. It is often cited that John Hopfield had a major influence on the
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revival with his article “Neural Computation of Decisions in Optimization Prob-
lems” in 1985, in which he showed how Hopfield-networks can solve the trav-
eling salesman problem. He also personally convinced many researchers of the
importance of this research topic.
Another, maybe stronger influence was caused by the development and wide
publication of the backpropagation learning method in 1986 by Rumelhart, Hin-
ton and Williams in “Learning internal representations by error propagation” in
the book “Parallel Distributed Processing” published by Rumelhart and McClel-
land. The method was also described in the article “Learning representations by
back-propagating errors” in Nature in the same year. The backpropagation learn-
ing method is – compared to older methods – very fast and robust for learning
patterns in multi-layer feed-forward networks. Another advantage is that it can
be described in a mathematically elegant way as a gradient descent method.
In 1986 Terrence Sejnowski and Charles Rosenberg showed with “Nettalk: a
parallel network that learns to read aloud” an impressive application that used
a feed-forward network trained with backpropagation to learn the pronunciation
of written single words in English. The network learned the pronunciation by
itself and the whole project reached a performance level almost as good as the
knowledge-based DECtalk-system (in which many man-years of development
were invested) after only a few weeks of work.
Since 1986, the field of Neural Networks has been developing explosively:
the number of researchers working on this topic is currently a few thousand,
there are many scientific publication journals with Neural Networks as their
main topic, large recognized scientific communities like INNS (International
Neural Network Society), ENNS (European Neural Network Society), a large
IEEE group and groups of national computer science communities like the GI
(Gesellschaft für Informatik).
Since 1986, the number of important researchers grew too large to be listed here.
There are many good books covering the history since 1986 in full detail.

• The next generation (1995 – today): Although ANNs have been applied very
successfully to arbitrary kinds of static pattern recognition, their application in
the processing or recognition of dynamic, non-stationary patterns was very diffi-
cult and unsolved in many application domains. To allow the general advantages
of Neural Networks to be applied to embedded systems – where the temporal as-
pect of signals and the response of the system to external events are in the main
point of view – the need of a new model arose.
To the best of the authors knowledge, models of Neural Networks that are com-
parable to the model of Spiking Neural Networks first appeared in 1995, al-
though some approaches were made a bit earlier (e.g. [GvH94, JA93, Wat94,
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HT87]).
It was again John Hopfield who made an important step in the topic of integrat-
ing the temporal aspect of biological systems into Artificial Neural Networks
[Hop95]. But nearly at the same time, Wolfgang Maass published his model of
SNNs [Maa95, Maa96], which is also used in this diploma thesis. The author
was unable to reconstruct the exact series of papers that led to the introduction
of Spiking Neural Networks, but since that time it has been an active and fruit-
ful research topic (e.g. [GML99, Gel89, Gel90, Ruf98, Maa99a, RWdRvSB97,
Maa99b, Maa97b, RS98, Maa97a] and many more).



12
CHAPTER 2. THEORETICAL FOUNDATIONS FOR SPIKING NEURAL

NETWORKS

2.2 Spiking Neural Networks

Spiking Neural Networks (SNNs) are considered as the third generation of artificial
neural networks and try to model the biological behavior more closely than the last
generation. Although the currently used Artificial Neural Networks (ANNs) which use
the firing rate of neurons as their computational element have proven to be very power-
ful for specific kinds of problems, some major properties of biological neural networks
are ignored. Through empirical evidence from biological experiments [TFM96] it be-
came clear that some effects and computations of the human brain [CBG01] cannot be
carried out by just using the firing rate of the respective neurons as information trans-
mitter – additionally, the exact timing of single spikes has to carry at least some of the
transmitted information.
In the following subsections, an introduction into the research topic of Spiking Neural
Networks will be given. This introduction will start with a motivation for the model of
SNNs, followed by a short explanation of biological neurons. After that, a few models
of biological neurons will be summarized to lay the grounds for the detailed definition
of the formal model of SNNs that will be used as the basis for this diploma thesis.

2.2.1 Motivation

ANNs are currently used very successfully in some assorted sets of applications, so the
question arises why there is a need for SNNs ? There seems to be a limit on what ANNs
are able to do and although many possible extensions of ANNs have been developed,
they do not seem to come close to what the human brain can do. One of the problems
that ANNs cannot really solve is the simulation of the oscillation and synchronization
effects in the human brain. Although simulating these effects on itself might not gain
computational power, recent work suggests that oscillation and synchronization might
be of high importance for parts of the vision system [Hen02].
As already stated in the introduction, Artificial Neural Networks typically encode the
firing rate of biological neurons as real numbered values which are used as input and
output values of the neurons [Zel94]. However, there is growing empirical evidence
[TFM96] for the importance of the timing of single spikes. It has been shown that the
human brain can process visual patterns in 150 msec, where about 10 processing levels
(neuron layers) are involved and neurons in these regions of the human brain usually
have a firing rate of less then 100 Hz. Therefore, since using a firing rate code would
involve averaging over the firing times of at least 2 received spikes, the processing time
available to each layer is not sufficient for estimating the firing rate – and therefore the
output values – of neurons. As a result of these observations it can be argued that the
computation has to be carried out using only the information transmitted with the first
spike that is fired by each layer.
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In principle, there are just three different possibilities currently known in neurophysi-
ology for encoding information in such spike trains [Ruf98]:

• rate coding: The essential information of the spike train is encoded in the firing
rates, which are determined by averaging over some time window.

• temporal coding: The timing of single spikes, i.e. the exact firing time, carries
the encoded information.

• population coding: The information is encoded by the activity of different pop-
ulations of neurons, i.e. the percentage of neurons concurrently active in a pop-
ulation.

As mentioned above, ANNs are typically limited to using a simulation of rate coding
by passing real numbered values between the neurons. However, this is not powerful
enough to solve some of the problems that biological neural networks solve easily
[Maa97b]. It is currently not clear if this is the main reason why ANNs seem to be
unable for solving some special problems [CBG01], but SNNs offer more flexibility
while also allowing straight-forward solutions of simpler problems.
In the context of fast information processing, temporal coding seems to be the most
important coding scheme. Therefore, this diploma thesis mainly focuses on this coding
scheme; but all of the developed principles and techniques can be applied directly to
arbitrary coding schemes - only the network inputs and outputs have to be adapted
(see section 3.4), the inner network structure can remain unchanged. However, for the
simulations described in sections 5.2 and 5.3 rate coding was used, which proves that
the developed methods as well as the current implementation are indeed completely
independent of the coding scheme.

Another advantage of SNNs over ANNs is that they can solve some of the problems
that ANNs are currently used for with less or simpler neurons. One example is the
simulation of RBF (Radial Basis Functions) networks: when an RBF network is to be
built as an ANN, the neurons have to use special activation functions to achieve the
RBF effect. Therefore, an RBF network cannot be built of the same neurons that are
used in a back-propagation network. With SNNs, this behavior can easily be achieved
[Maa99a]. Moreover, SNNs as defined in this diploma thesis already contain additional
parameters that can be used as the center of RBF neurons in a very intuitive way.
These parameters are the synaptic delays, which will be described in more detail in
section 4.2.
Another, more theoretical example for a problem that can be solved more easily with
SNNs is coincidence detection. Coincidence detection means the detection of events
that occur at the same time or in a short time window. When using temporal coding, the
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equivalent for ANNs would be equality detection, i.e. detecting if two or more inputs
have the same or nearly the same value. With ANNs, solving this problem for n inputs
needs at least n−4

2 neurons [Maa97b], while with SNNs this can be achieved with a
single neuron for an arbitrary number of inputs. Although this might not be relevant
for practical applications, it shows that SNNs can also offer advantages for problems
that are already solvable with ANNs.
However, it remains to be shown that the additional complexity of SNNs – which leads
to more complex simulation algorithms – does not cause more overhead than what is
gained in terms of new flexibility. The ultimate goal should always be to utilize the
available processing power most efficiently when solving a given problem, so SNNs
have to compete against ANNs in various problem areas. For SNNs to be adapted for
practical applications, they will need to be able to solve new problems and to solve
currently known problems more efficiently, with additional flexibility or with higher
solution quality then ANNs – at least for some application domains.

2.2.2 Biological Neurons

Before someone is about to conduct research on Artificial Neural Networks, it is al-
ways advisable to look at the biological model, i.e. neurons and neuronal structures
of animals and humans. However, when inspecting those complex models, it quickly
becomes clear that they do not have very much in common with current ANNs; there
is simply too much abstracted. The following part of this subsection is summarized
from the respective chapters in [Zel94] and [Ruf98].
Nervous cells, the basic parts of the brain, are different from other cells mostly in their
shape, their type of cell membrane and their property to form bulges (Synapses) at
their ends to connect to other nervous cells. Furthermore, they are normally not able to
reproduce themselves by cell division anymore after the embryonic phase.
In Fig. 2.1 a typical neuron is shown schematically, including its cell body (soma), its
inputs (dendrites) and its output (axon). Neurons are connected to each other through
synapses. Essentially they operate on an electro-chemical basis, where the interior of
a neuron is separated from the surrounding by a membrane that contains ion channels
which are highly specific to their respective sort of ions; one distinguishes between
Na+, K+, Ca2+ and Cl− channels. The potential difference across the membrane is
called the membrane potential. It is normally in an equilibrium state due to the different
concentrations of the ions in the interior and the outside, which cause an osmotic pres-
sure, and the charge displacement opposing this concentration gradient. When there is
no input to the neuron, the membrane potential will reach the so-called resting mem-
brane potential Erest which is usually between −40 and −90mV depending on the type
of the neuron. Ion channels can either be active or passive; passive ion channels have
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Figure 2.1: Schematic view of a nervous cell (from [Ruf98], after [Arb89]).

Value
Average output connectivity ca. 1000 to 10000
(number of connections to subsequent neurons)
Length of an axon few mm to ca. 1 m
Thickness of an axon 0.3 to 1.3 µm
Width of the synaptic gap ca. 20 nm
Number of neurotransmitters in a synaptic vesicle ca. 1000 to 10000
Duration of a nervous impulse (spike) ca. 1 ms
Thickness of the neuron cell membrane ca. 5 nm
Resting membrane potential -70 mV
Amplitude of a nervous impulse (Spike) ca. 100 mV
Electrical field of the membrane in equilibrium ca. 12000 V/mm
Transmission speed in an axon ca. 120 m/s
Speed of diffusion of neurotransmitters ca. 2 mm/min
Transmission time of a synapse ca. 0.6 ms
Membrane capacitance ca. 1µF/cm2

Table 2.1: Some numbers about neurons (from [Zel94]).

a constant conductance, the conductance of active ones can vary depending on certain
factors. When the membrane potential reaches some threshold, which is normally at
about −30mV , a pulse is generated that propagates along the axon (a spike). After a
spike has been generated (the neuron has fired), it enters a refractory period consisting
of two parts: the absolute refractory period in which no spike can be generated (the
threshold is infinitely high) and the relative refractory period in which the threshold is
higher. Table 2.1 shows a few selected numbers about biological neurons.
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Figure 2.2: Different types of multi-polar neuron cells (from [KSJ91]).

It is commonly assumed that humans have about 100 billions (1011) of neuron cells.
Although all of them are different in their shape, they can be classified according to
their structure and region in the brain. Unipolar cells have, besides their soma and their
nucleus, only one appendage, the axon. Bipolar cells additionally have one dendrite
and multi-polar cells have one axon and many dendrites (see Fig. 2.2). Dendrites are
thin, tube-like and mostly ramified appendages of neuron cells which act as the inputs
of the cell. Forwarding the electrical impulses (spikes) is done via the – normally much
longer – axon. The axon differs from the dendrites in its structure and the properties of
its membrane and can have a length between a few millimeters and almost one meter
(cf. table 2.1); but only in the end region it starts to ramify into the axonal arborization
(cf. Fig. 2.1). At the end of those ramifications end-bulbs, the synapses, are formed.
Usually human neuron cells have about 1000 to 10.000 of such synapses to connect to
subsequent neurons, but some cells such as the Purkinje cells can have up to 150.000
synapses. Most of the neurons receive input from about 2000 to 10.000 other neurons.
A spike that is propagated along the axon finally branches to the synapses, which con-
verts this pre-synaptic spike to a post-synaptic potential (PSP), influencing the mem-
brane potential of the post-synaptic neuron. Such a post-synaptic potential can either
increase the membrane potential, making the firing of the neuron more likely – this is
called an excitatory post-synaptic potential (EPSP) caused by an excitatory synapse, or
decrease it, making the firing less likely – this is called an inhibitory post-synaptic po-
tential (IPSP) caused by an inhibitory synapse (see Fig. 2.3 for examples of PSPs). The
strength of those PSPs depends on the strength of the synapse, which may vary over
time. As the synapses may be placed either on the dendritic tree or directly at the soma,
PSPs can interact in time and space. Although in biological neurons there are several
other non-linear effects involved in the PSPs influencing the membrane potential (for
details refer to [Ruf98, chapter 2] and [Zel94, chapter 2]), it is usually abstracted to the
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PSPs summing up linearly in the soma. This abstraction is the so-called integrate-and-
fire neuron (IFN) model or an extension thereof, the leaky integrate and fire neuron
model (LIFN, also refer to subsection 2.2.3).
It is very important to note that the action potential (spike) is equal for all neurons,
there are no significant differences in the amplitude or shape. Therefore a single spike
cannot transmit any other information than the space (of the axon) and the time (of the
firing). In [Zel94, page 42] and many other scientific papers and books, it is claimed
that the information about the strength of the output signal is coded in the frequency
and duration of the spikes. However, it is questionable whether this is indeed true. This
diploma thesis follows the argumentation of various other authors and proposes that
the exact timing of single spikes also carries important information (refer to subsec-
tion 2.2.1).
There exists strong evidence that the basis for learning is formed by synaptic plasticity,
i.e. the possibility that the strengths of synapses vary over time. Donald O. Hebb was
the first one to address the question on how synaptic weights can be modified to store
information. He postulated the nowadays called “Hebbian” learning in 1949 in the
following way [Heb49]:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
changes take place in one or both cells such that A’s efficiency as one of
the cells firing B, is increased.

Therefore, similar activation patterns in the pre-synaptic and post-synaptic neuron
strengthen a synapse, which can be formally written as the Hebb rule for the modi-
fication of a weight wAB for a synapse from neuron A to neuron B:

∆wAB = η ·VA ·VB

where η > 0 is the learning rate and VA and VB denote the respective activities of the
neurons A and B. For Hebbian learning, all information has to be locally available at
the synapse; therefore the information from both the pre-synaptic and the post-synaptic
neurons needs to be known. At the moment there exist different formulations of the
Hebb rule, depending on the type of interaction. For details, refer to [Ruf98].
In the following section, a few mathematical models describing the biological model
in various levels of abstraction are listed and a short introduction into the biologically
realistic Hodgkin-Huxley model is given.

2.2.3 Mathematical Model for Biological Neurons

Currently there are various mathematical models which can be used for modeling and
simulating Spiking Neural Networks. These models range from the biologically very
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Figure 2.3: Post synaptic potentials and action potential, picture taken from
http://www.cis.tugraz.at/igi/tnatschl/online/3rd_gen_ger/node1.html

realistic Hodgkin-Huxley [HH52] and compartmental models, which use differential
equations to model the electrical properties of neurons via the integrate-and-fire model
[Ger95, Tuc88] respectively the leaky integrate-and-fire model to the rather simple
spike-and-response model [Ger98, GvH94] – all of them are using spike timings as
their primary code for computation. Usually they are simulated continuously with fixed
time-steps because of the representation of some mathematical functions in the model,
especially the function modeling the post synaptic potential generated by synapses.
The post-synaptic potentials are the changes induced to the neuron potential of their
subsequent neuron (the post-synaptic neuron); they are generated by synapses when-
ever they receive a spike (from the pre-synaptic neuron). Fig. 2.3 shows the shape of
a spike (action potential) and an excitatory and an inhibitory post synaptic potential
(EPSP, IPSP).

The Hodgkin-Huxley model – or an extension thereof, the compartmental model – is
used by some current simulation tools, such as the widely used GENESIS simulator
[BB94]. The following description of these models is a summary of [Ruf98, chapters
2.2.1 and 9.1].
In 1952, Hodgkin and Huxley conducted research on the squid giant axon and devel-
oped their Hodgkin-Huxley model describing the initiation and propagation of action
potentials. In these axons, the membrane potential Vm is dependent on the the pas-
sive ion channels (resulting in a leak conductance gl) and active K+ and Na+ ion
channels (with voltage-dependent conductances gK and gNa). The reversal potentials
resulting from the ion concentration differences are El = −54,3mV , ENa = 50mV and
EK = −77mV , the resting membrane potential is about Erest = −65mV . The Hodgkin-
Huxley model can be specified as an equivalent electrical circuit describing the time
dependencies of the active ion channels and the influence of the conductances on the
membrane potential Vm. In Fig. 2.4 this equivalent circuit is shown; it can be formally
described by
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Figure 2.4: Electrical circuit describing the membrane potential (after [Ruf98]).

C
dVm

dt
= gl(El −Vm)+gNa(ENa −Vm)+gK(EK −Vm)

where C is the membrane capacitance. The ionic currents are described by the terms
gi(Ei −Vm) whereas the conductance gl is constant and gNa and gK are voltage-
dependent:

gNa = GNa ·m3 ·h

gK = GK ·n4

where GNa and GK are constants for the maximum conductances. The property that ion
channels can be blocked is modeled by the time- and voltage-dependent state variables
m,n,h ∈ [0,1]. A typical action potential as generated by these equations is shown in
Fig. 2.5, parallel to the changes of m, n and h. For details, refer to [Ruf98] and [HH52].

This model of the time-dependent functioning of the squid giant axon has been ex-
tended to allow the division of neurons into a finite number of interconnected compo-
nents, so-called compartments. Although an axon can also be modeled using multiple
compartments, it is normally not needed. But complex dendritic trees of some neurons
(such as a GENESIS model of a Purkinje cell consisting of 4550 compartments) can
be simulated biologically very realistically using the extended model. The equivalent
circuit of a compartment as shown in Fig. 2.6 can be expressed by

Cm
dVm

dt
=
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Figure 2.5: The trajectories of Vm and the state variables during the generation of an
action potential (from [Ruf98]).

Figure 2.6: Electrical circuit for a basic compartment (after [Ruf98]).

For details the reader is again referred to [Ruf98].

As the previous description might already suggest, this biologically very realistic
model is too complex for solving problems of mainly computational nature or for
theoretical considerations on the computational power of different network models.
Therefore, in the next chapter a simpler, more abstract model of SNNs is described



2.2. SPIKING NEURAL NETWORKS 21

which is better suited for these tasks.

2.2.4 Mathematical Model for Spiking Neurons

In this diploma thesis the following definition of spiking neural networks, directly cited
from [Maa95], is used as the basis for construction a model of SNNs that is optimized
for fast simulation:
An SNN consists of:

• a finite directed graph 〈V,E〉 (we refer to the elements of V as “neurons” and to
the elements of E as “synapses”)

• a subset Vin⊆V of input neurons

• a subset Vout⊆V of output neurons

• for each neuron v ∈V −Vin a threshold function Θv : R
+ → R∪{∞}

• for each synapse 〈u,v〉∈ E a response function εu,v : R
+ → R and a weight

wu,v ∈ R
+

We assume that the firing of input neurons v ∈ Vin is determined from outside of the
SNN, i.e. the sets Fv ⊆ R

+ of firing times (“spike trains”) for the neurons v ∈ Vin are
given as the input of the SNN.
For a neuron v ∈ V −Vin one defines its set Fv of firing times recursively. The first
element of Fv is inf{t ∈ R

+ : Pv(t) ≥ Θv(0)}, and for any s ∈ Fv the next larger el-
ement of Fv is inf{t ∈ R

+ : t > sand Pv(t) ≥ Θv(t − s)} , where the potential function
Pv : R

+ → R is defined by

Pv(t) := ∑
u ∈V

〈u,v〉 ∈ E

∑
s ∈ Fu
s < t

wu,v · εu,v(t − s)

The firing times (“spike trains”) Fv of the output neurons v ∈ Vout that result in this
way are interpreted as the output of the SNN.
The complexity of a computation in an SNN is evaluated by counting each spike as a
computation step.

This model represents a rather general definition of SNNs and is related to biological
neurons as follows: the shape of a post synaptic potential (PSP) caused by an incoming
spike from neuron u is described by the response function εu,v, where εu,v(t) = 0 for
t ∈ [0,du,v] with du,v modeling the delay between the generation of the action potential
and the time when the resulting PSP starts to influence the potential of neuron v.
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Currently the ways of simulating such SNNs differ heavily from the way ANNs are
used in today’s applications. This is caused by the immanent complex behavior of
spiking neurons compared to the relatively simple behavior of sigmoidal neurons used
in ANNs. Sigmoidal neurons usually only sum up the analog input values they receive
and utilize a sigmoid function to compute their output value from this sum, while
spiking neurons try to model the behavior and partly the structure of biological neu-
rons more closely. Therefore spiking neurons are often simulated using the biologically
very realistic Hodgkin-Huxley model, which uses differential equations to describe the
shape of neuron potentials and generated spikes (see subsection 2.2.3). These differen-
tial equations impose the use of continuous simulation techniques, where the values of
mathematical functions are computed at simulation times with fixed or variable time
steps. However, with this simulation technique, the inner states of neurons which are
inactive at some simulation time also need to be computed, resulting in bad scalability
of the simulation in terms of large networks with many neurons. A better simulation
technique – concerning scalability – is the so-called discrete event simulation where
computation is only necessary for simulation elements that change their state at the
current simulation time. In large networks where only a small percentage of neurons is
active at any given time, discrete event simulation is expected to be significantly faster.

2.3 Discrete Event Simulation

Various parts of this chapter have been taken from the respective parts in the FWF
project proposal “DEVS Simulation of Spiking Neural Networks”, to which Herbert
Prähofer has kindly contributed many corrections and additions. The model itself, the
extensions and the description thereof have been summarized from [ZPK00].
Discrete event simulation [ZPK00, BCN01, Ban98] is a technique for modeling and
simulating systems where the system behavior is abstracted to discrete events. In con-
trast to continuous simulation, where all system states are computed for the simulation
time points (either with fixed or with variable time steps), discrete event simulation
calculates the simulation time points when the system states reach specific values.
Discrete event simulation is a widely used technique in such diverse application areas
as performance evaluation of manufacturing, transport, communication, and computer
systems, verification of VLSI systems, and others. The great benefit of discrete event
simulation compared to continuous simulation or time discrete simulation [ZPK00] is
that the behavior of the systems is reduced to essential events. Simulation jumps from
one event time to the next event time. Between event times, no simulation has to be
done. Moreover, system parts which are in a quiet phase, i.e, parts where no events
occur at the time, do not have to be simulated at all. The simulation can be restricted
to the active areas of the system.
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In this way, discrete event simulation has shown to have great benefits compared
to continuous simulation. For example, discrete event simulation allows to simulate
large VLSI systems at the gate level for which no continuous simulation is feasi-
ble. In [Moo96] the idea of discrete event simulation has been adopted for simulat-
ing ecosystems, an application area which is usually modeled with partial differential
equations and simulated with computationally demanding finite difference or finite el-
ement methods. Research has shown that the discrete event simulation technique led
to simulation performance improvements with a factor of 100 and more. It allowed to
simulate models of a size which never had been tackled before [ZY96, ZD97].
Spiking neural networks show similar characteristics as the application areas above.
As shown in the next section, SNNs can be modeled using the DEVS discrete event
system formalism [ZPK00]. Spikes can naturally be modeled with event signals. The
usual activity patterns observed in SNNs, where spikes spread in a restricted area of
the whole network, should lead to dramatic performance improvements.

The following classic DEVS system specification is directly cited from [ZPK00], but
has been slightly adapted to match the model extensions better:
A discrete event system specification (DEVS) is a structure

M = 〈X ,Y,S,δint ,δext ,λ, ta〉

where

• X is the set of input values

• Y is the set of output values

• S is a set of states

• δint : S → S is the internal transition function

• δext : Q×X → S is the external transition function, where

– Q = {(s,e) | s ∈ S,0 ≤ e ≤ ta(s)} is the total state set

– e is the time elapsed since last transition

• λ : S → Y is the output function

• ta : S → R
+
0,∞ is the time advance function

The interpretation of these elements is illustrated in Fig. 2.7. At any time the system is
in some state, s. If no external event occurs, the system will stay in state s for time ta(s).
Notice that ta(s) could be a real number as one would expect. But it can also take on
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Figure 2.7: Overview over the parts of the DEVS model (form [ZPK00]).

the values 0 and ∞. In the first case, the stay in state s is so short that no external
events can intervene – we say that s is a transitory state. In the second case, the system
will stay in s forever unless an external event interrupts its slumber. We say that s is
a passive state in this case. When the resting time expires, i.e., when the elapsed time,
e = ta(s), the system outputs the value, λ(s), and changes to state δint(s). Note that
output is only possible just before internal transitions.
If an external event x ∈ X occurs before this expiration time, i.e., when the system is
in total state (s,e) with e ≤ ta(s), the system changes to state δext(s,e,x). Thus, the
internal transition function dictates the system’s new state when no event occurred
since the last transition. The external transition function dictates the system’s new
state when an external event occurs – this state is determined by the input, x, the
current state, s, and how long the system has been in this state, e. In both cases, the
system is then in some new state s′ with some new resting time, ta(s′), and the same
story continues.

Following the above definition, the mentioned leaping from one simulation time to the
next can be explained easily. An external event, such as a spike being received from
the outside of the network, triggers an internal state change which advances the system
from one discrete state to another one. The same happens for internal events, such as
spikes that are fired by a neuron inside the network. Therefore it is never necessary to
simulate the trajectories of system states between discrete events. Instead, the power
of the simulation system lies in the implementation of the functions δint(s), δext(s,e,x)
and ta(s) which depend heavily on the chosen state values s ∈ S. Furthermore, the sys-
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tem will only produce outputs on state changes (internal or external) using the output
function λ(s).

There are a few extensions to this classic DEVS model with the parallel DEVS model
being the most advanced [ZPK00]. However, for this diploma thesis, the parallel DEVS
model is not as important because the developed simulation framework is currently
targeted towards sequential single-processor machines. However, a short discussion
about future enhancements using parallel simulation is given in section 6.3. In the
following, two simpler extension are shortly summarized which are of importance for
the object oriented implementation of the simulation framework.
The first extension is the classic DEVS with ports model which differs from the classic
model only in the definitions of the input, output and state sets:

MPorts = 〈X ,Y,S,δint ,δext ,λ, ta〉

where

• X =
{
(p,v) | p ∈ InPorts,v ∈ Xp

}
is the set of input ports and values

• Y =
{
(p,v) | p ∈ OutPorts,v ∈ Yp

}
is the set of output ports and values

• S is the set of sequential states

This model is more concrete than the classic DEVS model in the sense that it makes
modeling easier by introducing the notation of finite numbers of input and output ports
instead of the abstract notation of input and output sets. The second extension is the
classic DEVS coupled model which additionally includes the means to build models
from components; this allows the formation of hierarchical specifications:

N = 〈X ,Y,D,{Md | d ∈ D} ,EIC,EOC, IC,Select〉

where

• X =
{
(p,v) | p ∈ InPorts,v ∈ Xp

}
is the set of input ports and values

• Y =
{
(p,v) | p ∈ OutPorts,v ∈ Yp

}
is the set of output ports and values

• D is the set of component names

• components are DEVS models, for each d ∈ D,

– Md = 〈Xd,Yd,S,δint ,δext ,λ, ta〉 is a DEVS with
Xd =

{
(p,v) | p ∈ InPortsd,v ∈ Xp

}
,

Yd =
{
(p,v) | p ∈ OutPortsd,v ∈ Yp

}
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• external input coupling connect external inputs to component inputs,
EIC ⊆ {((N, ipN),(d, ipd)) | ipN ∈ InPorts,d ∈ D, ipd ∈ InPortsd}

• external output coupling connect component outputs to external outputs,
EOC ⊆ {((d,opd),(N,opN)) | opN ∈ OutPorts,d ∈ D,opd ∈ OutPortsd}

• internal coupling connects component outputs to component inputs,
IC ⊆ {((a,opa),(b, ipb)) | a,b ∈ D,opa ∈ OutPortsa, ipb ∈ InPortsb}

However, no direct feedback loops are allowed, i.e., no output port of a compo-
nent may be connected to an input port of the same component:
((d,opd),(e, ipe)) ∈ IC ⇒ d 6= e

• Select: 2D −{}→ D, the tie-breaking function (used in classic DEVS but elimi-
nated in parallel DEVS)

The possibility to construct complex models hierarchically stems from the notation that
components of the classic DEVS coupled model are themselves DEVS (with ports)
models, which of course can again be DEVS coupled models.
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Chapter 3

Model

The investigation of the potential of SNNs can be regarded as an open research is-
sue [RWdRvSB97] – their analysis requires powerful simulation systems which al-
low to simulate large networks of neurons. However, no such simulators are currently
available. The GENESIS simulator [BB94] is currently considered as the standard
simulator for SNNs. It is a continuous simulator working at the level of continu-
ous signals and is primarily used for conducting research on biological neural net-
works. With its accuracy in emulating biological neurons in detail, it is widely ac-
cepted and often used for this task. But, due its simulation execution demands, it
does not allow to simulate large networks for tackling mainly technical problems.
Other research on SNNs also use continuous simulation as analysis technique (e.g.
[Ruf98, SM01, MN97, BB94, QC01, CBG01]). Because of the computationally ex-
pensive continuous simulation technique, there were quite some attempts at making
the simulation faster [SM01, NT].
This diploma thesis proposes the adoption of discrete event simulation techniques for
building an SNN simulator. Discrete event simulation abstracts from continuous sig-
nals to event occurrences and, by that, usually shows dramatic reduction in simulation
execution time and/or increase of model size. SNNs, due to the event-like occurrences
of spikes, lend themselves naturally for discrete event simulation.
In the following, a discrete event model for SNNs is outlined which should serve as
the basis for building an SNN simulator.

The scientifically new concept of this diploma thesis – which already has been pre-
sented in [MAP+02] – is to combine the SNN and DEVS models to achieve a flexible,
fast and scalable simulation of powerful SNNs.

To accomplish this task, a new model of Spiking Neural Networks was developed in
cooperation with Michael Affenzeller, Herbert Prähofer, Gerhard Höfer and Alexander
Fried. This novel model has been designed especially for discrete event simulation. It
is based on the integrate-and-fire model and the mathematical formalization of Spik-
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ing Neural Networks introduced in [Maa95] and cited in subsection 2.2.4, but does not
use continuous functions for modeling post synaptic potentials and neuron potentials.
Instead of this, piecewise linear functions are applied, which offer the possibility to ex-
actly and easily calculate the firing times of neurons using their potential and threshold
functions.
In the next section, piecewise linear functions as used in this diploma thesis will be
thoroughly defined and the advantages of their application will be analyzed.

3.1 Piecewise linear functions

The neuron will fire whenever the value of its potential is equal to or higher than the
value of its threshold. Therefore, calculating the next firing time is equivalent to cal-
culating an intersection between two piecewise linear functions, which can be done
efficiently. It has been shown in [Ruf98] that spiking neural networks using piecewise
linear functions are real-time equivalent to a Turing machine, i.e. the simulation of one
computation step of a Turing machine by an SNN constructed especially for this pur-
pose only takes a fixed amount of computation steps within that SNN. Therefore, the
use of piecewise linear functions as synaptic response, potential and threshold func-
tions describing the inner neuron state should not affect the qualitative computation
power of SNNs negatively. Nevertheless, simulations will make it possible to study
the PSP shape’s quantitative influence on the computational efficiency of SNNs. By
the use of piecewise linear functions, our model makes it possible to approximate the
shape of different functions as closely as needed or wanted in different applications.
Additionally there is a gain in flexibility because there is no restriction to mathemati-
cal functions with a closed representation. Currently, studying the effects of different
shapes of synaptic response functions is difficult because closed representations of
these functions have to be found (for the numeric integration techniques – used in con-
tinuous simulations – to work). Within our new model, this restriction no longer exists,
offering neuro-biologists more degrees of freedom in their studies of neural models.
For efficient handling and computations we use a special optimization: not representing
the piecewise linear functions by a list of time/value tuples for the function points but
by a list of time/gradient tuples for the function segments. This optimization has been
suggested by Alexander Fried. Furthermore, in this thesis the functions are defined to
start and end at a value of zero.
Therefore, a piecewise linear function f (t) is defined as follows:
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f :=
〈
〈si,λi〉 | si ∈ R

+
0 , λi ∈ R

+, (∀u,v) (0 < u < v < len( f )) su < sv
〉

f (0) := 0

f (t) :=
k−1

∑
i=1

( f s
i+1 − f s

i ) · f λ
i +(t − f s

k ) · f λ
k

with k = maxi(si < t) (the index of the last gradient change before the current time t).
f is a vector of tuples 〈si,λi〉 where si are unique, strictly monotonic increasing time
values and λi are gradient values. The gradients are defined as the multiplicands in the
linear function equations

y = λi · x+di

Between the time points si and si+1 the function has a constant gradient λi, s0 := 0,
f (0) := 0, λ0 := 0 and λm+1 := 0 for m being the number of gradient changes in f .
The additional constraint f (sm+1) := 0 must be satisfied to make the function bounded.
Only the segments 〈si,λi〉 for (i = 1, ...,m) need to be specified to completely define
f (t) for all t, because λm+1 is defined to be zero and sm+1 (the time when the function
again reaches a value of 0) can be computed from the other values. Fig. 3.2 shows the
shape of such a piecewise linear function with 5 segments.
This makes it possible to represent a piecewise linear function consisting of N seg-
ments with N time/gradient tuples and also offers a wide range of possible optimiza-
tions in the simulation.
For working with piecewise linear function as defined in this section, the following
notation will be used:

• f s
i denotes the starting time of the i-th segment (the time value of the i-th tuple

of the vector f )

• f λ
i denotes the gradient of the i-th segment (the gradient value of the i-th tuple

of the vector f )

• f s denotes the set of all starting time values in f , i.e. f s := { f s
i | 0 ≤ i ≤ len( f )}

• f λ denotes the set of all gradient values in f , i.e. f λ :=
{

f λ
i | 0 ≤ i ≤ len( f )

}

3.2 Spiking Neurons

Furthermore, this novel model treats neurons and synapses as active elements and uses
single spike events for modeling the spikes that a neuron emits; only indicating the
exact firing times but ignoring the shape of spikes (which are also not modeled in
the widely used integrate-and-fire model). As neurons are not coupled directly but
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Figure 3.1: The input synapses of a neuron v receive spike events from neurons u =
1, ...,n, therefore generating the input values of neuron v.

only via synapses to each other, it are the synapses that receive the spike events sent
by the neurons. Each synapse receives spike events from only one neuron (the pre-
synaptic neuron) and has only one neuron to send events to (the post-synaptic neuron).
Therefore, the network forms a bipartite graph of neurons and synapses with synapses
being positioned between neurons as shown in Fig. 3.1. This diploma thesis uses the
notation that a neuron v receives its input from neurons u = 1, ...,n, which send their
spike events to the respective input synapses of neuron v.
Those synapses 〈u,v〉 are, upon the receipt of a spike event from their pre-synaptic
neuron u, also responsible for generating the post-synaptic potentials in the form of
piecewise linear functions εu,v(t) and forwarding them to their post-synaptic neuron v,
scaled by their specific synaptic weight wu,v and deferred by their synaptic delay du,v.
Fig. 3.2 shows the input and output of a synapse which is generating an excitatory
post-synaptic potential due to the receipt of a spike. After a neuron v has received
a new post-synaptic potential from one of its input synapses 〈u,v〉, it merges it with
its currently valid potential Pv(t) and recalculates if and when the next firing occurs
by calculating the time when the potential function Pv(t) intersects with the threshold
function Θv(t). The neuron threshold is modeled as a time dependent function instead
of a constant value to prevent a neuron from instantly firing again because the potential
Pv(t) might still be higher than the threshold value. Therefore, the threshold function
Θv(t) is defined to be infinite for some time τv,re f (the so-called absolute refraction
period of the neuron) after the neuron v has fired, effectively preventing it from firing
until the threshold has a finite value again. After this absolute refraction period ends
at relative time τv,re f , the neuron enters the relative refraction period, during which the
threshold function rapidly approaches its constant value Θv(0), which by definition is
reached at relative time τv,end . In Fig. 3.4 the firing of a neuron v due to the intersection
of the potential and the threshold functions is shown.



3.2. SPIKING NEURONS 31

Eingang

Ausgang

t
u

s
1

s
2

s
3

s
4

s
5

s
6d

uv

l
1

l
2

l
3

l
4

l
5

t

t

Figure 3.2: Synapse functioning: The synapse generates an excitatory post-synaptic
potential (EPSP) after the receipt of a spike event.

Following the definition in section 3.1, the synapse response function εu,v(t) can now
be written as

εu,v(t) :=
ku,v−1

∑
i=1

(εs
u,v,i+1 − εs

u,v,i) · ε
λ
u,v,i +(t − εs

u,v,ku,v
) · ελ

u,v,ku,v

and εu,v(0) := 0, whereas ku,v := maxi(εs
u,v,i < t). Therefore the current gradient

of εu,v(t) is denoted by ελ
u,v,ku,v

. If, after each gradient change, the function value
εu,v(εs

u,v,ku,v
) is calculated for the simulation time directly before this change, then the

recursive form

εu,v(t) = εu,v(εs
u,v,ku,v

)+(t − εs
u,v,ku,v

) · ελ
u,v,ku,v

can be used.
The assumption that εu,v(t) = 0 for t ∈ [0,du,v], i.e. the initial synaptic delay between
the receipt of a spike from neuron u until the post-synaptic potential starts changing
the potential of neuron v, can be modeled easily by choosing εs

u,v,1 = du,v (ελ
u,v,0, the

gradient within the interval [0,εs
u,v,1] is 0 by definition).
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The potential of a neuron can now be defined as

Pv(t) := ∑
u ∈V

〈u,v〉 ∈ E

∑
su ∈ Fu

su < t

wu,v · εu,v(t − su)

with Pv(0) := 0, where V specifies the set of neurons, E the set of synapses and Fu

the set of firing times of the neuron u. Therefore the potential Pv(t) is defined as the
linear sum of all incoming PSPs caused by spikes from the neurons u, whereas multiple
PSPs from a single synapse 〈u,v〉, started at times su ∈ Fu, can be active (the response
function εu,v(t − su) has not reached 0 again) concurrently.
Inserting the definition of piecewise linear functions in Pv(t) yields:

Pv(t) := ∑
u ∈V

〈u,v〉 ∈ E

∑
su ∈ Fu

su < t

wu,v ·

(
ku,v−1

∑
i=1

(εs
u,v,i+1 − εs

u,v,i) · ε
λ
u,v,i +(t − su − εs

u,v,ku,v
) · ελ

u,v,ku,v

)

However, computing this formula directly each time an intersection with the threshold
function has to be calculated would cause too much computational effort. Therefore,
it is one of the key points where optimization is necessary. In this diploma thesis, the
following optimization is proposed: Pv is kept as a state variable which is initially
empty.

Pv(t) := 〈〉 for (∀u) (u ∈V, 〈u,v〉 ∈ E) Fu = /0

When a neuron of the input set of v, i.e. a Neuron u for u ∈ V and 〈u,v〉 ∈ E, fires,
then the new response function εu,v(t − su) (post-synaptic potential) generated by the
synapse 〈u,v〉 is merged with Pv; merging is simply done by adding the response func-
tions to the potential recursively:

P
′

v(t) := Pv(t)+ εu,v(t − su)

As these functions are both piecewise linear as defined in section 3.1, the sum of two
piecewise linear functions needs to be calculated:

P
′

v = Pv ⊕ εu,v

Pv ⊕ εu,v :=

〈
〈si,λi〉 | si ∈ Ps

v ∪ εs
u,v,

(∀ j,k) (0 < j < k < len(Pv ⊕ εu,v)) s j < sk,

λi =
dPv

dt

∣∣∣∣
t→s+

i

+
dεu,v

dt

∣∣∣∣
t→s+

i

〉
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with d f
dt

∣∣∣ t → s+
i denoting the gradient of the function f at time si, but using the “right”

gradient (with values infinitesimally larger than si) if f is not continuous at si. This
merge process can be done with linear complexity for arbitrary previous states of Pv

and response functions – assumed that both functions are valid according to the defi-
nition and constraint given in section 3.1; calculating the gradient values as

λi = Pλ
v, j + ελ

u,v,k

j = max
l

(Ps
v,l ≤ si)

k = max
l

(εs
u,v,l ≤ si)

in the above definition of the sum enables an efficient implementation. After the merge
process, the new neuron potential is – in any case – again a piecewise linear function
following all constraints given in section 3.1 (e.g. the values P

′s
v,i are unique and strictly

monotonic increasing and P
′

v(P
′s
v,m+1) := 0).

Fig. 3.3 shows an example where a new response function εu,v(t − su) is merged with
the current potential function Pv, generating the new potential function P

′

v.

Due to the special internal representation of and constraints on piecewise linear func-
tions in the current implementation, it is possible to use an extended and very fast
variant of the merge-sort algorithm for combining a newly received post-synaptic po-
tential with the current neuron potential (see section 4.2) which completely eliminates
the need to sum up over the neuron inputs as it has to be done in the standard integrate-
and-fire model.

The threshold function Θv(t) is also defined as a piecewise linear function as

Θv(t) :=





∞ i f maxi(Θs
v,i) ≤ t < maxi(Θs

v,i)+ τv,re f

Θv,re f

−∑lv−1
i=1 (Θs

v,i+1 −Θs
v,i) ·Θλ

v,i
+(t −Θs

v,l) ·Θ
λ
v,l

i f
maxi(Θs

v,i)+ τv,re f ≤ t
< maxi(Θs

v,i)+ τv,re f + τv,end

Θv(0) otherwise

where Θv(0) is some constant value, Θs
v,i specify the firing times of neuron v, Θv,re f

is the initial value of Θv(maxi(Θs
v,i)+ τv,re f ) after the absolute refraction period with

Θv(t) = ∞, lv denotes the number of gradient changes and Θλ
v,i are the gradients within

the intervals [Θs
v,i,Θ

s
v,i+1] (see Fig. 3.4).

The goal of discrete event simulation is now to calculate the simulation times sv (in
Fig. 3.4 specified as tv for better readability) at which the neuron v will fire.
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Figure 3.3: Merging a new post-synaptic potential with a neuron’s potential function.

3.3 Calculation of firing times

To calculate the simulation time points when a neuron v will fire, it is necessary to
calculate the intersections between the neuron’s potential and threshold functions. As
both the potential and threshold functions are piecewise linear, this calculation can be
reduced to calculating the intersection between linear functions. A linear function is
normally given as

y(t) = k · (t − e)+d

For uniquely defining such a function, only one of the constants d and e would be
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Figure 3.5: Calculating the intersection between a neuron’s potential and threshold
functions.

necessary. But for simplifying the application of these equations to the intersection
algorithm, both are used. To calculate the intersection between two such functions y1

and y2, one can use
d1 + k1 · (t − e1) = d2 + k2 · (t − e2)

or, after making t explicit:

t =
d1 −d2 − k1 · e1 + k2 · e2

k2 − k1

When calculating the intersection between two piecewise linear function, it is sufficient
to calculate the intersections between each of the segments. The intersection of the
piecewise linear functions is found when the calculated time t is inside the time-frame
in which both segments are valid. An example of this can be seen in Fig. 3.5; in this
example the intersection between the neuron potential Pv and the neuron threshold Θv

occurs in segment 3 of Pv and segment 2 of Θv. Thus, when calculating the intersection
time t between those segments with
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t =
xP,3 − xΘ,2 −λP,3 · sP,3 +λΘ,2 · sΘ,2

λΘ,2 −λP,3

the condition xP,3 ≤ t < xP,4 ∧λΘ,2 ≤ t < λΘ,3 is met. This means that the intersection
time t is within the definition frame of the segments (the time interval in which both
segments are valid) and therefore it is indeed an intersection between Pv and Θv.
When Pv and Θv are piecewise linear functions according to the definition in 3.1 (the
important restriction is that the tuple vectors need to be sorted), then the intersection
time can be calculated in linear time complexity.

3.4 Network inputs and outputs

For an SNN to prove useful in practical applications, there is a need for well-known
coding schemes at the inputs and outputs of the network. The temporal spike coding
scheme, transporting information within the neural network on the exact firing times
of spikes, seems to offer many benefits in terms of computation power and compact
coding of information. Nevertheless, at the moment there exist practically no sensors
or actors utilizing this coding scheme, so it cannot be used for interacting with the real
world. Therefore, input and output converters which transform the external information
coding to spike trains at the SNN input and the spike trains to the external coding at the
SNN output are needed. Effectively, this transforms the SNN into a black box whose
inner operations do not have to be known.
Additionally, these converters offer more flexibility because the external and internal
information coding schemes are decoupled. This enables the use of different spike
coding schemes, such as temporal coding, rate coding, population coding or much
more complex coding schemes (like fractal coding) without being forced to change
the external representation of information. It also eases the use of different external
information codings, e.g. when adding additional sensors or actors for interaction with
the environment.

Currently, input and output converters between real numbered vectors outside the SNN
and two inner coding schemes have been specified: temporal coding and rate coding.
The third known coding scheme that is used in biological models, population coding
(refer to subsection 2.2.1), is currently not specified in detail. The following definitions
have, as far as applicable, been adapted mainly from [Ruf98] because the input and
output converters are independent of the inner simulation technique; their only purpose
is to convert between real numbered values and simulation times.

Temporal coding is defined as follows: The input neurons u fires at simulation times

su = Tinput −d · xu
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where xu specifies the real numbered value that should be coded, Tinput a reference time
marking the input value zero, and d a common scaling factor. It has been shown that
this coding scheme can be used to easily detect equality or near-equality of values (see
[Maa97b]), simulate McCulloch-Pitts neurons (see [Maa99b]), compute radial basis
functions (RBFs, see [Hop95]) and weighted sums (see [Ruf98]) as well as simulat-
ing sigmoidal neurons (also [Ruf98]) and approximating any continuous function (see
[Ruf98], [Maa99b] and [Maa97a]).
Rate coding is defined by

∆su =
1
xu

The neuron u fires periodically with frequency xu whereas xu is the real numbered
value that should be coded. By definition, the input neuron u starts to fire at time

su,0 =
1
xu

for the first time and then fires at the recursively defined times

su,i+1 = su,i +∆su.

This definition uniquely defines the firing times of an input neuron u for a constant
input value xu. It is not defined and dependent on the implementation how the exact
firing times are calculated when the input value xu changes during the simulation.
Usually ∆su will be modified immediately when xu changes, but the next firing time
su,i+1 will be kept – the next firing event will be executed as it has been scheduled.
Only the firing time after the next, su,i+2, will be influenced by the changed firing rate
as su,i+2 = su+1 +∆su.

The network output converters work accordingly by receiving spike events at their
inputs and computing real numbered values for their outputs. Temporal coded output
converters calculate the output value with

xu =
Tinput − su

d

whereas the constant scaling factor d should have the same value as used in the input
converter. If a reference spike at time Tinput is available, marking the exact time point
with real numbered value 0, then this output coding is the exact inversion of the input
coding, allowing the network to use absolute input and output values. However, if such
a reference value is not available, then the output converter must take the smallest value
in the respective output cycle (the time of the spike that has been received latest) as
Tinput ; this results in some constant error for all output values (scaled correctly but not
having an absolute reference point). This problem is inherent to the coding scheme,
which is based on relative times (time differences).
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Rate coded output converters can simply use the last two received spikes to calculate
the output value (the firing rate) with

xu =
1

∆su
=

1
su,i+1 − su,i

.

3.5 Learning

Learning the synaptic weight values in this model can be done as in every other im-
plementation of an SNN simulation. E.g. in [Ruf98] a few methods for supervised and
unsupervised learning in temporal coding are explained. One such learning rule for
supervised learning can be conducted with only two spikes at each synapse 〈u,v〉: the
pre-synaptic neuron u fires at time tu and the post-synaptic neuron is forced to fire at
time t0 by additional PSPs (from auxiliary neurons), which is the time it should fire for
the given input pattern. Then the synaptic weight can be changed according to

∆wu,v = η · (t0 − tu)

with a following normalization of the weight vector of neuron v after each learning cy-
cle. However, since there are auxiliary neurons needed to make this learning possible,
it is questionable whether there is any biological motivation for this method. SNNs
naturally imply the use of unsupervised learning techniques due to their inherent event
oriented nature.
Therefore, the simulations conducted for this diploma thesis do not use any form
of supervised learning. Instead, a simulation of an SOM (Self Organizing Map, see
[Koh95]) has been written – but the basic structure needed for arbitrary learning al-
gorithms has been implemented, making the use of other learning methods easy (see
section 4.4). A simple, unsupervised learning rule would be to apply

∆wu,v = η · (su −wu,v)

to the winner neuron v (the neuron that fires first in the competitive layer), where su

is the firing time of the pre-synaptic neuron u in the current cycle and η is the current
learning rate [Ruf98]. But to extend this method to also exhibit self-organizing behav-
ior, neighborhood information must be introduced. One way to do so, also described in
[Ruf98] and implemented for the simulation described in section 5.4, is the following,
enhanced learning rule:

∆wu,v = η ·
Tout − tv

Tout
· (su −wu,v)

where tv is the firing time of the v-th competitive neuron (the post-synaptic neuron of
the respective synapse) and Tout is the reference time marking the end of the learning
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cycle. It is important that no competitive neuron will fire after Tout – every neuron that
fires in the current learning cycle must fire before this time; this can be satisfied by
setting Tout large enough. The rule is applied to all neurons in the competitive layer that
have fired before time Tout . Then, the neighborhood function needed for self-organizing
behavior is realized by the factor (Tout − t j)/Tout . Furthermore, the learning rate η as
well as the lateral weights w̃i, j between the competitive neurons are slowly decreased,
thus also decreasing the size of the neighborhood as the learning advances.
Another unsupervised learning rule is described in [NR98], which emulates RBF net-
works in temporal coding. However, for this diploma thesis no simulations about RBF
networks were conducted.
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Chapter 4

Framework

In order to be able to prove that the concepts proposed in this diploma thesis indeed
work for practical simulations, a Java framework for DEVS simulation of SNNs has
been developed and the core parts concerning the structure of the Neural Networks and
handling of events including calculating firing times of neurons are complete. Using
discrete event simulation, an enormous increase in simulation speed and flexibility is
expected when compared to the currently used continuous simulation techniques. It
should be possible to simulate large networks of spiking neurons and thus allowing
studies of advanced networks holding a lot more information than networks with only
a small number of neurons. Additionally, it is expected that the simulation speed-up
gained by discrete event simulation will increase with the size of a network, because
typically the percentage of concurrently active neurons will decrease as the number
of neurons in the network increases. With this framework it will be possible to sim-
ulate and visualize Spiking Neural Networks with piecewise linear functions and to
experiment effectively with new signal forms and learning methods in the context of
computational theory as well as from the biological point of view. Although the use of
other function types is possible in the core parts of the framework, the current imple-
mentation only covers piecewise linear ones (as defined in section 3.1), which seem
to be sufficient for reproducing most computational effects of biological neural net-
works (refer to section 3.1). If, at some time, it turns out that other function types, e.g.
polynomial functions or approaches based on B-splines [CS47, CS96] could be bene-
ficial, adding these types to the framework can easily be carried out; the base classes
of the framework have been defined on an abstract level that is independent of the
used functions. Nevertheless, piecewise linear functions also allow an approximation
of all function shapes as closely as needed or wanted, even if there are more efficient
approximations for some function types.
In the following subsections, the simulation framework will be described. First of all,
the core parts of the framework for the event handling in neurons and synapses is
explained, followed by an overview of the additional parts providing added function-
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ality. In general, the implementation will not be explained in great detail, because the
Javadoc documentation has been generated for exactly this purpose. Instead, in this
chapter mainly the features of the different components will be described, but elabo-
rating the description for the core algorithms that actually implement the formal modal
described in chapter 3. In the algorithm descriptions, merely the important parts will
be shown, omitting debugging statements and maintenance code.
For details of the implementation such as method parameters, pre- and post-conditions
and exceptions, the reader is referred to the Javadoc documentation which is contained
on the CD-ROM (submitted accompanyingly).

4.1 Architecture

The simulation framework is based on MOSAIC (MOdeling and Simulation by As-
sembling Interactive Components), developed at the Institute for Systems Research
at the Johannes Kepler University Linz. It is a framework for building discrete event
simulation systems following the DEVS model and using an object oriented approach
based on JavaBeans. This approach allows to build complex simulation systems hier-
archically. Furthermore, JavaBeans define a clean application programming interface
(API) for the use of the basic components. Because of the use of Java as implemen-
tation language, the whole simulation system is completely platform independent and
can run on any computer which a Java virtual machine (JVM) is available for. During
the development of this simulation framework, both Microsoft Windows 2000 with
JVM 1.3.1 and JVM 1.4 as well as Debian GNU/Linux 3.0 with JVM 1.3.1 and JVM
1.4 have been used. Therefore, the system runs without any problems on these refer-
ence platforms. It will probably run on any platform with a JVM, but this has not been
verified so far.

4.1.1 Requirements

Currently only a JVM version >= 1.2 is needed to compile and run the simulation, but
this may change in the future due to the possible use of newer language features (such
as assertions available since JVM 1.4 or templates planned for JVM 1.5).
Additionally, a few external Java libraries are needed for various parts of the simulation
framework; but all of them are available for free:

• Apache Ant: Apache Ant is a Java-based build tool that enables to build complex
software packages platform-independently. In this simulation framework, it is
used for controlling the whole build process (explained in subsection 4.1.2).
Required version: >= 1.4 including the additional tasks package
Available from: http://jakarta.apache.org/ant/index.html
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License: “Apache Software License, Version 1.1” (Open Source)
Ant is not distributed with the simulation framework because it is needed to build
the distribution.

• JUnit: JUnit is a regression testing framework written by Erich Gamma and Kent
Beck. It is used to conduct automatic regression tests of software components
that can run automatically. In this simulation framework, it is used to test im-
portant parts automatically before creating the distribution files (explained in
subsection 4.1.3).
Required version: >= 3.7
Available from: http://www.junit.org/index.htm
License: “IBM Common Public License Version 0.5” (Open Source)
JUnit is distributed with the simulation framework in the source tree under
libraries/junit-3.7.jar

• JAI: The Java Advanced Imaging API provides a set of object-oriented interfaces
that support a simple, high-level programming model which allows developers to
manipulate images easily. In this simulation framework, it is only used for load-
ing and storing images as network inputs and outputs (explained in section 4.3).
Required version: >= 1.1.1
Available from: http://java.sun.com/products/java-media/jai/index.html
License: “Sun Microsystems, Inc. Binary Code License Agreement JAVA AD-
VANCED IMAGING API, VERSION 1.1.1” and “DEVELOPMENT TOOLS
JAVA ADVANCED IMAGING, VERSION 1.1.1 SUPPLEMENTAL LICENSE
TERMS”
JAI is distributed with the simulation framework in the source tree under li-
braries/jai_core.jar and libraries/jai_coded.jar. Distribution in binary form is al-
lowed by the “SUPPLEMENTAL LICENSE TERMS”, paragraph 2.

4.1.2 Build process

Since this simulation framework is a complex software system consisting of many
interacting components, the build process of the distribution files (source, documen-
tation and binary) is not trivial. Therefore, to enable the system to be built easily, an
automated build process has been created.
The build process uses Apache Ant as the build tool. This program parses the file
build.xml to get the build instructions. As this is an XML file, it can be read with
any ASCII editor. Normally, it is enough to call the Ant program from within the
distribution source directory; it will automatically load the build file and execute the
default task, dist, which in turn depends on the other needed tasks. The distribution
source directory contains the following content:
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[ build/ ]
build.xml
concurrent/
[ dist/ ]
libraries/
mosaic/
sim/

The directories build/ and dist/ are created during the automatic build process and
are therefore not contained in the source distribution. As mentioned above, the file
build.xml is the main build file for Ant, which contains all the instructions that are
needed to create the documentation and binary distributions from the extracted source
distribution. In the directory libraries/ are only those Java libraries that are distributed
with the simulation framework (described in subsection 4.1.1). The other directories,
concurrent/, mosaic/ and sim/ contain the source code of the whole simulation frame-
work, including MOSAIC.
When Ant is executed from within this source directory without further parameters, it
automatically creates the directories build/, containing the intermediate build files, and
dist/, containing the created source, documentation and binary distribution files. This
behavior is defined by the various build tasks in build.xml, which are listed in table 4.1.

4.1.3 Automatic component testing

Due to the support of the JUnit regression testing framework, building new au-
tomatic component tests is simple. A new test class only needs to be derived
from junit.framework.TestCase, which is demonstrated by the implemented
ImageConverterTest class. Currently the framework is set up to contain unit test
classes in the package mosaic.sim.neuron.tests, correspondingly in the source
directory mosaic/sim/neuron/tests. Although at this stage, the ImageConverterTest

class is the only one that has been implemented, other ones will be added in the fu-
ture, with tests for the core algorithms (like merge and intersection of piecewise linear
functions, see section 4.2 for an explanation) being added next.
The main build file build.xml contains the build task test to start the automatic re-
gression tests. Newly added tests will automatically be included in the testing process,
they only need to be put into the mentioned directory.

4.1.4 Basic structure

The most basic structure of the whole simulation framework is a bipartite graph formed
of Neuron and Synapse objects. All of the simulation dynamics builds upon this topol-
ogy, which is illustrated in Fig. 4.1.
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Task name Depends on Description
init Creates an internal time stamp and the directory

build/.
compile init Compiles the whole Java source from the current

directory (contained in the directories concurrent/,
mosaic/ and sim/ ) and puts the compiled class files
into build/.

test compile Starts the automatic regression tests on the com-
piled classes and stops the build process when an
error occurs.

dist compile Creates the directory dist/, generates the
JavaDoc HTML documentation and generates
the files dist/DEVSNeuron-doc-<date>.zip,
dist/DEVSNeuron-src-<date>.zip and
dist/DEVSNeuron-bin-<date>.jar.

The file DEVSNeuron-doc-<timestamp>.zip
contains the JavaDoc HTML documenta-
tion for the simulation framework, the file
DEVSNeuron-src-<date>.zip contains the
complete source distribution with all files
that are needed to build itself and the file
DEVSNeuron-bin-<date>.jar contains all com-
piled class and auxiliary files needed to run the
simulations (only the binary distribution file is
needed to run the simulations or develop additional
simulations).

clean Removes the directories build/ and dist/.

Table 4.1: Build tasks in the automated framework building process.

Following the methodology of MOSAIC, the core parts are active elements which di-
rectly or indirectly use the MOSAIC base class Timer. This class enables components
to become active in the simulation by triggering time events; moreover, it allows the
simple addition of visualization elements based on the Java Swing technology. In the
present simulation framework, three types of events are used:

• Time events: These events are triggered when a certain simulation time is
reached. Setting such an event to be executed at some defined, future sim-
ulation time is called scheduling. As these event types are already pro-
vided by the MOSAIC framework, its functionality is used. Whenever a time
event is to be scheduled for activation, a method called activateAt(double

absoluteTime) or activateIn(double relativeTime) is called (see algo-
rithm 1 for an example). These two methods are implemented in Timer, sup-
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n1:Neuron

sx1:Synapse

sy1: Synapse

spikeEvent

Figure 4.1: The general structure of the simulation framework is a bipartite graph of
Neuron and Synapse objects.

Figure 4.2: Auxiliary classes in the core framework.

ported by BasicActiveModel as well as ActiveVariable (refer to section 4.2)
and are therefore available in each derived class.

• Internal events: These events are mostly subsequent events which are caused by
time events or state change events. In the implementation, internal events are
simple method calls that are usually done for a list of similar objects. One of
the most important events in the simulation framework is the spike event, which
is sent by Neuron objects to a list of Synapse objects; this event is an internal
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event (refer to algorithm 2), but is caused by a time event which activates that
Neuron object.

• State change events: These events are triggered when certain system states
change their value. Sending and listening for such events is also supported by
MOSAIC, the created simulation framework is using this support. Although
state change events are mostly used for the visualization (by visualization com-
ponents listening to state changes of those components they represent), they are
also used for triggering the recalculation of firing times after the potential or
threshold functions of a Neuron object have changed.

The use of these events in the various parts of the simulation will be described in more
detail in the following sections. However, there are a few global auxiliary classes that
are used in almost all following parts:

GlobalConstants This class defines some constants that are global parameters for
the simulation framework, e.g. the inaccuracy window used for comparing two
floating point numbers. (Due to rounding errors, it is not reasonable to com-
pare floating point numbers for equality. Instead, the absolute difference has to
be smaller than some small value ε, called inaccuracy window in this diploma
thesis.)

CodingException This class represents an exception in the used spike coding scheme,
which can be e.g. temporal or rate coding. Whenever a situation is detected that
is not allowed within the definition of the used coding scheme, this exception is
thrown by the input or output converters.

Debug This class is used for debugging purposes, mainly for printing debug messages
dependent on a trace level and for assertions (although they are now available
as a language construct with a JVM >= 1.4, but the assertions provided by this
class are more powerful in logging error messages).

4.2 Neurons and Synapses

The core framework mainly consists of the classes Neuron and Synapse, which are in
the center of the simulation. As can be seen in Fig. 4.3, the connection between Neuron

and Synapse objects lies within the interfaces NeuronInput and NeuronOutput,
which will be described below. Now, the main idea is that Neuron objects fire spike
events to Synapse objects by calling the respective method; therefore those spike
events are internal events. Upon receiving a spike event, the Synapse objects will
then in turn invoke a method of their post-synaptic Neuron object to state that an event
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Figure 4.3: Main classes for event handling in neurons and synapses.
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has been received. After this, the Neuron object will start handling the incoming fir-
ing event (see algorithm 1) which involves the calling of another method of the input
Synapse object to get the parameters of the generated synapse response function. Due
to this incoming event, the Neuron object might then generate a time event for its own
activation, scheduled for the time when the next firing event is due. As the time event
is then triggered at some future simulation time, the Neuron object will get reactivated
and will in turn emit a spike event (see algorithm 2).
In the following, the interfaces and classes that implement this concept in the core parts
of the simulation framework are explained. It is important to note that the process itself
is completely independent of the used function types, be them piecewise linear, spline
based or continuous – the general idea is merely to use an event based approach.

NeuronInput This interface specifies the capability of an object to act like an input
of a neuron, i.e. the ability to receive spike events. It will usually be directly
connected to an object with the capability of sending spike events, i.e. an object
that implements the NeuronOutput interface. The only method that is defined
by this interface and therefore must be implemented by objects which need to
receive spike events is

public void spikeEvent(NeuronOutput sender)

Therefore, a spike event does not carry any other information than the sender
object, which is biologically motivated.

NeuronOutput This interface specifies the capability of an object to act like the out-
put part of a neuron, i.e. the ability to send spike events. Objects implementing
the NeuronInput interface will register to this event source and all objects im-
plementing NeuronOutput must call the spikeEvent() method of all currently
registered objects whenever the object emits a spike event. This interface de-
fines the usual addOutput and removeOutput methods as used by Java event
handling.

NeuronOutputSupport This is a helper class for objects that want to emit spike
events. It implements everything required by the NeuronOutput interface and
also offers the method fireSpikeEvent for sending a spike event to all regis-
tered NeuronInput listeners. Because not only Neuron objects will emit spike
events, but typically also input converters (see section 4.3) and other “sensory”
classes, the functionality of sending a spike event to a list of registered listeners
has been abstracted into this class.



50 CHAPTER 4. FRAMEWORK

Neuron This is the core class of the framework, administrating the handling of spike
events and holding the Potential and Threshold objects. It represents a neu-
ron, which is able to fire spike events (thus it implements the NeuronOutput

interface) and receive spikes indirectly via Synapse objects. For a simple han-
dling of the input and output Synapse objects, this class uses ArrayList mem-
bers, which can easily be manipulated using the respective member functions.
Additionally, more sophisticated methods for manipulating inputs and outputs
are available, such as the method addInput which adds a given NeuronOutput

object to the list of inputs; to accomplish this, a new Synapse object is gener-
ated from a template object and the bi-directional connections on both sides of
the Synapse object (the given pre-synaptic NeuronOutput object and the cur-
rent post-synaptic Neuron object) are set up. Thus, this single method call will
generate four new links to completely connect the bi-directional, bipartite graph
formed of Neuron and Synapse objects.
Furthermore, each Neuron object contains a Potential and a Threshold object
for maintaining its internal state as defined in the formal model in section 3.2.
The Neuron object itself does not have any other state information than the in-
put and output object lists; all of the calculation according to the formal model
is done in the embedded Potential and Threshold objects. However, it is
responsible for administrating the flow of spike events through the simulation
framework, as shown in algorithms 1 and 2.

Note that the Neuron object itself is completely independent of the function
types.

Synapse This class represents synapses, which are the connections between neu-
rons in the biological model. When a Synapse object – which implements the
NeuronInput interface – receives a spike event from any NeuronOutput capa-
ble object, it will forward it to the connected "post-synaptic", i.e. the receiver
Neuron object (see algorithm 3), which will then query the Synapse for the re-
sponse parameters. These parameters define how the neuron potential changes
because of the incoming spike. This class is declared abstract because it does
not define any response function type, but those function types must be defined
by using a derived class and overriding the method getResponseParameters.
However, Synapse already implements the maintenance code needed to connect
with a sender NeuronOutput object (which will mostly be a Neuron object) and
a receiver Neuron object. Furthermore, it defines a framework for implementing
learning methods, which is described in section 4.4.

PLFunction This class represents a piecewise linear function in a finite time-frame
with a finite number of linear segments as defined in section 3.1. It stores
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This method is called by the input Synapse object after receiving a spike event – thus it is the
entry point in the Neuron object for handling internal events.

public void spikeEventFrom(Synapse sy) {
potential.mergeSynapseResponse(sy.getResponseParameters());
scheduleNextFiring();

}

As can be seen easily, the Neuron object just passes the synapse response parameters (that
are obtained from the Synapse object which sent the event) to its Potential object. This
Potential object is then responsible for updating its state (see algorithm 5). The method
scheduleNextFiring then uses the newly calculated future Potential state to calculate and
schedule the next time when this Neuron object will fire.

protected void scheduleNextFiring() {
double dt = computeTimeOfFire();
if (dt == Double.POSITIVE_INFINITY)

passivate();
else

activateAt(dt);
}

In this method, the real calculation is again delegated to another object, in this case the
Threshold object by calling the method computeTimeOfFire which only calls the respective
method of the Threshold object (see below). After that, two cases are distinguished. Either the
calculation resulted in a next firing time (in which case the return value is non-infinite) and the
respective time event for activating the Neuron object is scheduled, or there is no next firing
time with the current Potential and Threshold states (the return value is infinite) and the
time event is canceled.

public double computeTimeOfFire() {
return threshold.calculateNextFireTime(potential);

}

Then the Neuron object has completed handling the incoming event at the current simulation
time.

Algorithm 1: Handling an incoming event in a Neuron object.

these segments in simple arrays of double values. The linear segments are
described by their gradients and their starting times and the whole function is
defined to start at value 0 and time 0 with gradient 0. All gradients[i] are
valid between the times gradientTimes[i] and gradientTimes[i+1]. There-
fore, the whole function has a value of 0 in the interval [0,gradientTimes[0]].
The last segment, starting at time gradientTimes[numGradients] with
gradient[numGradients] is defined to end at the time when the func-
tion reaches the value 0. This time can be retrieved by using the method
getEndTime(). Additional methods are provided for operations on piecewise
linear functions, such as getFinishedSegments and getValueAtTime.

PLSynapse This class is derived from Synapse, implementing synapses with piece-
wise linear functions. This class is still abstract because the shape of the piece-
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When a time event has been scheduled by scheduleNextFiringTime, the Neuron object will
get reactivated at the scheduled simulation time by the MOSAIC framework. This reactivation
is done by calling the method processSimEvent, which is then responsible for generating a
firing event.

public void processSimEvent(SimEvent e) {
fireSpikeEvent();
threshold.fired();
for (int i=0; i<inputs.size(); i++)

((Synapse) inputs.get(i)).postNeuronFired();
scheduleNextFiring();

}

First of all, the spike event is fired by using the respective method of the base class
NeuronOutputSupport. Then, the Threshold object is notified of the firing as it may change
its state due to this (this notification is also an internal event), followed by the input Synapse
objects also being notified (this is important for learning algorithms as explained in sec-
tion 4.4). In a final step, a possibly new time event is scheduled as the Potential and
Threshold states might already generate another spike in the future (if no spike is to be emit-
ted, scheduleNextFiring will not schedule a time event).

Algorithm 2: Generating a spike event in a Neuron object.

When a Synapse object receives a spike event (due to implementing the NeuronInput inter-
face), it will forward this event to its associated receiver Neuron object.

public void spikeEvent(NeuronOutput sender) {
lastEventTime = SimApplication.getCurrentSimApplication().getTime();
receiver.spikeEventFrom(this);

}

After the time of the incoming spike event is recorded, which is important for learning algo-
rithms, the internal event is simply forwarded to the associated receiver Neuron object.

Algorithm 3: Forwarding a spike event in a Synapse object.

wise linear function is not defined, but queried using the abstract function

protected PLFunction getStandardResponse()

But those synaptic parameters that are usually used at each synapse, the weight
and delay, are directly implemented in this class; they are applied to the piece-
wise linear function returned by getStandardResponse before returning it in
the overridden method getResponseParameters (see algorithm 4).

ConstantPLSynapse This class represents a synapse using piecewise linear func-
tions, but with a constant shape for all synapse objects in the simula-
tion. It merely overloads the method getStandardReponse from PLSynapse

to return a piecewise linear function that is kept as a static member in
ConstantPLSynapse.
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The method getResponseParameters is responsible for returning the response function that
a Synapse generates in response to a spike event.

public Object getResponseParameters() {
PLFunction standardResponse = getStandardResponse();
PLFunction response = new PLFunction(standardResponse.gradients.length);
for (int i=0; i<response.gradients.length; i++)

response.gradients[i] = standardResponse.gradients[i] * weight;
for (int i=0; i<response.gradients.length; i++)

response.gradientTimes[i] = standardResponse.gradientTimes[i] +
delay;

return response;
}

First of all the standard shape of the response function is retrieved from the abstract method
getStandardResponse. Then this response is simply scaled by the weight parameter and
shifted by the delay parameter before returning it.

Algorithm 4: Calculating the current synapse response function from synaptic param-
eters.

ActiveVariable This class implements an active variable that has support for sending
out VariableChangeEvents and for sending itself a TimeEvent, therefore be-
ing an active variable container. Active variables are able to generate the third
type of event: the state change events. This class has been implemented because
BasicActiveModel does not support sending VariableChangeEvents.

Potential This class represent the potential of a neuron. It is abstract and does not
implement any behavior, but just defines the interface that the Neuron class uses
to interact with its associated potential. The only methods defined by this class
and needed to be implemented in overriding classes are

public double getCurrentPotential()

public void mergeSynapseResponse(Object change)

(see algorithm 1).

PLPotential This class represents a neuron potential described by a piecewise lin-
ear function. It does for the Potential object what PLSynapse does for
Synapse: implementing a specific behavior of the abstract functionality. To ac-
complish this, PLPotential has a state member variable changes, which is a
PLFunction and contains the currently known potential function (mostly fu-
ture segments, but might also have some past segments). Although currently
the arrays for the used PLFunction objects are recreated dynamically on any
change, the class is fully prepared for using fixed-sized arrays in case of per-
formance problems with dynamic memory allocation. The real functionality of
this class is inside the method mergeSynapseResponse, whose primary work-
ing is described in algorithm 5, which is an implementation of the definition in
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section 3.2. Additionally, the processSimEvent method is used for cleanup to
prevent unbounded growth of the PLFunction kept in changes.

public void mergeSynapseResponse(Object change) {
PLFunction newChange = (PLFunction) change;
int i = 0, j = 0, k = 0;
boolean changesActive = false, newChangeActive = false;
buffer = new PLFunction(numSegments + newChange.gradients.length);
while (i < numSegments || j < newChange.gradients.length) {

if (j >= newChange.gradients.length || (i < numSegments &&
(newChange.gradientTimes[j] + getTime()) -
changes.gradientTimes[i] >
GlobalConstants.DOUBLE_INACCURACY_WINDOW)) {
changesActive = true;
buffer.gradients[k] = changes.gradients[i] +
(newChangeActive ? newChange.gradients[j-1] : 0);

buffer.gradientTimes[k] = changes.gradientTimes[i];
i++;

}
else if (i >= numSegments || (j < newChange.gradients.length &&

changes.gradientTimes[i] -
(newChange.gradientTimes[j] + getTime()) >
GlobalConstants.DOUBLE_INACCURACY_WINDOW)) {
newChangeActive = true;
buffer.gradients[k] = newChange.gradients[j] +
(changesActive ? changes.gradients[i-1] : 0);

buffer.gradientTimes[k] = newChange.gradientTimes[j] + getTime();
j++;

}
else {

changesActive = newChangeActive = true;
buffer.gradients[k] = changes.gradients[i] +
newChange.gradients[j];

buffer.gradientTimes[k] = changes.gradientTimes[i];
i++; j++;

}
k++;

}
numSegments = k;
PLFunction swap = buffer;
buffer = changes;
changes = swap;

signalVariableChange();
}

After the definition of needed local variables and some maintenance code not shown here,
the variant of the merge-sort algorithm immediately begins. The first if-branch is entered
whenever a segment of the old changes is to be copied to the new changes, either because there
are no more newChange segments or this segment starts before (concerning simulation time)
the next segment from newChange. The second if-branch is entered whenever a segment from
newChange is to be copied. The last if-branch is entered whenever the segments in changes
and newChange begin at (nearly, as defined by the inaccuracy window) the same time. As can
be seen easily, this method has a linear time complexity.
After this sorting has been completed, the newly created buffer function is swapped to be
available as member variable changes and a state change event is sent to all listeners (e.g.
visualization objects). For a detailed description of all conditions the reader is referred to the
source code.

Algorithm 5: Merging a synapse response with the current neuron potential.
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Threshold This class represents a Neuron threshold. It is abstract and does not imple-
ment any behavior, but just defines the interface that the Neuron object uses to
interact with its associated threshold. The only abstract methods defined by this
class and needed to be implemented in overriding classes are

public double getCurrentThreshold()

public double calculateNextFireTime(Potential

potential)

(see algorithm 1), but fired (see algorithm 2) should also be overridden to gain
control over the behavior when the associated Neuron object has fired.

PLThreshold This class implements a threshold with piecewise linear functions, but
is still declared abstract because the exact shape of the threshold in the rela-
tive refraction phase is not defined. However, it implements the calculation of
the next firing time by intersecting a piecewise linear potential and a piecewise
linear threshold function. The implemented method calculateNextFireTime

uses a state member variable with three different states: quiescent, absolute re-
fraction and relative refraction. Normally the threshold is in the quiescent state
in which it has a constant threshold value. Upon invocation of the method fired

(which is called by the associated Neuron object when it emits a spike event, see
algorithm 2), the absolute refraction state is entered in which no firing is pos-
sible (calculateNextFireTime always returns an infinite value). After some
time, the relative refraction state is entered, in which the threshold is a piece-
wise linear function that ends after some more time, returning to the quiescent
state; these state transitions are carried out using time events and the method
processSimEvent.
In algorithm 6 the calculation of an intersection between arbitrary piecewise
linear functions, as defined in section 3.3, is shown. The implementation of
calculateNextFireTime merely uses this method in the quiescent (with a
piecewise linear function with one segment) and relative refraction states – the
other code in calculateNextFireTime is dedicated to maintenance.

4.3 Network inputs and outputs

In the current simulation framework, input and output converters for the temporal cod-
ing scheme and an input converter for the rate coding scheme have been implemented.
To enable an abstraction of the coder and decoder, interfaces for vector and matrix in-
put and output have also been defined. In the following, the network input classes will
be described.
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The method calculateIntersectionPoint calculates the intersection between two arbitrary
piecewise linear functions.

protected double calculateIntersectionPoint(
PLFunction f1, double startValue1, double startTime1, int numSegments1,
PLFunction f2, double startValue2, double startTime2, int numSegments2) {
int i1, i2;
double x1 = startValue1, x2 = startValue2, k1, k2, t1, t2,
t, fireTime = 0;

boolean foundIntersectionWithin = false, foundIntersectionBefore = false;
PLFunction.FloatIntPair ret1 = f1.getFinishedSegments(
startValue1, numSegments1, getTime() - startTime1, false);

PLFunction.FloatIntPair ret2 = f2.getFinishedSegments(
startValue2, numSegments2, getTime() - startTime2, false);

i1 = ret1.i; x1 = ret1.f;
i2 = ret2.i; x2 = ret2.f;
while (! foundIntersectionWithin &&
i1 < numSegments1-1 && i2 < numSegments2-1) {
k1 = f1.gradients[i1]; k2 = f2.gradients[i2];
t1 = f1.gradientTimes[i1] + startTime1;
t2 = f2.gradientTimes[i2] + startTime2;
if (k1 != k2) {

t = (x1 - x2 - k1*t1 + k2*t2) / (k2 - k1);
if (t < t1 || t < t2)

foundIntersectionBefore = true;
else if (t <= f1.gradientTimes[i1+1] ||
t <= f2.gradientTimes[i2+1]) {
fireTime = t;
foundIntersectionWithin = true;

}
}
if (f1.gradientTimes[i1+1] + startTime1 >

f2.gradientTimes[i2+1] + startTime2)
i2++;

else if (f1.gradientTimes[i1+1] + startTime1 <
f2.gradientTimes[i2+1] + startTime2)
i1++;

else { i1++; i2++; }
}
if (foundIntersectionWithin)

return fireTime;
else {

if (foundIntersectionBefore)
return Double.NEGATIVE_INFINITY;

else
return Double.POSITIVE_INFINITY;

}
}

After skipping segments that are entirely in the past, this algorithm principally just tries to
calculate an intersection time between each of the segments in f1 and each of the segments in
f2. However, since both functions are sorted by definition, it is enough to advance the segments
in both functions instead of looping over them in nested loops – therefore this algorithm also
features linear time complexity. For those segments that are intersected, the exact definition
from section 3.3 is used.
After calculating the intersection time of two segments, there are just 3 possibilities: either the
intersection time is before the scope of one (or both) of the segments, it is within the scope of
both segments or it is after the scope of one (or both) of the segments. The first case is a special
one: when no real intersection is found, then the method return negative infinity, indicating
that the given functions have an intersection before the current simulation time. The second
case is the “normal” case where there is an intersection between two future segments, i.e. an
intersection between the given functions within their scope. If no intersection (either case 1 or
case 2) is found until the end of both given functions, positive infinity is returned.

Algorithm 6: Calculating the intersection between piecewise linear functions.
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Figure 4.4: Network input converter classes.

VectorInputCoder This is an interface for delivering a one-dimensional vector of
real numbered values to the network. It must be implemented by a class with a
defined spike coding scheme (the so-called coder). It only defines the methods

public void enterVector(double[] vector)

public NeuronOutput getOutput(int index)

The method enterVector is designated for use from “outside” of the network
to send real-numbered vector input events to the network, while getOutput can
be used from “inside” of the network to obtain access to the spike event outputs
of the coder.

MatrixInputCoder This is an interface for delivering a two-dimensional matrix of
real numbered values to the network. It must be implemented by a class with a
defined spike coding scheme (the so-called coder). It only defines the methods

public void enterMatrix(double[][] matrix)

public NeuronOutput getOutput(int dim1, int dim2)

As with VectorInputCoder, enterMatrix is for the “outside”, while
getOutput is for the “inside” of the network.



58 CHAPTER 4. FRAMEWORK

TemporalCodedInput This class implements a spike source using temporal coding
by implementing the interface VectorInputCoder. It is a converter between
analog values at its input and spike events at its output. The coding is done as
follows: First of all, the number of inputs (i.e. the length of the input vector)
must be equal to the number of outputs (inner NeuronOutputSupport classes).
Thus, the analog vector submitted to the class via the method enterVector is
converted to exactly one spike per output. The higher the analog input number,
the earlier the spike on the associated output will be fired. Therefore the output
associated to the analog input with the highest value will fire immediately, the
other outputs will fire later, determined by the formula defined in section 3.4 (see
algorithm 7).
This class can optionally use a reference output that fires at the latest time, thus
representing the analog input value 0 and marking the end of the spike series
emitted by this class.

The implementation of enterVector in TemporalCodedInput computes single spike events
for each output depending on the given real numbered vector.

public void enterVector(double[] vector) throws CodingException {
double maxValue=0;
for (int i=0; i<vector.length; i++) {

if (vector[i] > maxValue)
maxValue = vector[i];

}
if (reference != null)

reference.fireIn(multiplicator * maxValue);
for (int i=0; i<vector.length; i++) {

if (vector[i] != Double.NEGATIVE_INFINITY)
((Output) outputs.get(i)).fireIn(multiplicator *
(maxValue - vector[i]));

}
}

As defined in section 3.4, the spike firing times depend on the maximum value that is present
in the input vector. After finding the maximum, the spike times are computed according to that
formula and the firing of the respective output spikes is scheduled. Furthermore, if a reference
output is used, it is scheduled to fire at the time that marks an input value of 0.

Algorithm 7: Temporal coding of an input vector.

RateCodedInputSingle This class implements a single spike source using rate cod-
ing. It is a converter between a real numbered value at its input and spike events
at its output. The coding is done as follows: the method getRate and setRate

can be used to set the firing rate of the current input, which continuously gen-
erates spike events with the computed interval (see algorithm 8). The rate is
computed as defined in section 3.4.

RateCodedInputVector This class implements a spike source using rate coding. It
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Firing spike events continuously can be done by using time events and regenerating new time
events when they are triggered. Therefore the method processSimEvent, which is called when
time events are triggered, is responsible for sending rate coded spike events.

public void processSimEvent(SimEvent e) {
fireSpikeEvent();
if (rate != 0.0) {

double nextTime = 1 / rate;
activateIn(nextTime);

}
}

Each time a time event is triggered, the according spike event is immediately fired, followed
by scheduling a new time event (dependent on the currently set firing rate) for firing the next
spike event.

Algorithm 8: Rate coding of an input vector.

does for a vector what RateCodedInputSingle does for a single real numbered
value. In fact, it uses RateCodedInputSingle objects for doing the real compu-
tation when receiving an input vector. This class implements VectorInput, as
does TemporalCodedInput. Therefore, these coding schemes should be easily
interchangeable.

ImageInput This class reads an image and converts it to either a one-dimensional
vector of dimension height ·width or a two-dimensional matrix of dimension
(height,width). For feeding a one-dimensional vector to the network, this class
uses the interface VectorInput; for feeding a two-dimensional matrix, it uses
MatrixInput. Objects implementing these interfaces have to be given to the
constructor when initializing. To start the real input, reading the image and gen-
erating the vector or matrix, the method startInput needs to be called.
This class needs the JAI (Java Advanced Imaging) library.

RandomSpikeSource This class implements a random spike source with a config-
urable maximum interval between two emitted spikes. After being initialized
with init, it just fires spike events at random intervals [0,maxTime[. Therefore
it can be used for conducting experiments on noise stability.

In order to be able to interpret the outputs of an SNN, output converters need to be im-
plemented; these converters clearly depend on the spike coding scheme used inside the
network and the desired output coding. To make them as flexible as input converters,
interfaces have also been defined for abstracting from the spike coding scheme. In the
following, the currently implemented output converters will be described.

VectorOutputListener This interface must be implemented by objects that want to
receive the real numbered, one-dimensional vectors computed by the network.
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Figure 4.5: Network output converter classes.

The object receives an event whenever an output cycle is complete and the real
numbered output values have been computed; these output events are generated
by some spike decoder. The only method defined by this interface is

public void outputEvent(double[] vector)

MatrixOutputListener This interface must be implemented by objects that want to
receive the real numbered, two-dimensional matrices computed by the network.
As in VectorOutputListener, the only defined method is

public void outputEvent(double[][] matrix)
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TemporalCodedOutput This class is a converter between spike events at its in-
puts and real numbered vectors – using VectorOutputListener objects –
at its output. The spike events have to be coded temporally, e.g. from a
TemporalCodedInput object, and are received by objects of an anonymous
inner class implementing NeuronInput. These objects will, upon receipt of a
spike event, record the reception time and notify the TemporalCodedOuput ob-
ject. When the output cycle is complete, i.e. either each input object has received
a spike, the cycle time has ended or the reference input has received a spike, the
object triggers itself to decode the spike timing and send the output event (see
algorithm 9)

For decoding temporally coded spike events, it is again the method processSimEvent in which
the computation takes place. It is called when the output cycle has been completed and per-
forms the computation of the real numbered output vector.

public void processSimEvent(SimEvent e) {
double outVector[] = new double[inputs.size()];
for (int i=0; i<inputs.size(); i++) {

Input inp = (Input) inputs.get(i);
if (inp.hasReceivedSpike()) {

outVector[i] = (getTime() - inp.getReceivedTime()) / multiplicator;
inp.reset();

}
else

outVector[i] = Double.NEGATIVE_INFINITY;
}
for (int i=0; i<listeners.size(); i++)

((VectorOutputListener) listeners.get(i)).outputEvent(outVector);
}

The output vector is generated using the formula defined in section 3.4 and is simply sent to all
registered listeners that implement the VectorOutputListener interface.

Algorithm 9: Temporal decoding of an output vector.

OutputFilter This class is a decorator for output listeners, enabling the filtering of
output events:

• First of all, it can pass only the first event and filter out all subsequent ones.

• Secondly, events can be forwarded when they have reached an equilibrium,
i.e. they do not change anymore within a certain error range.

The constructor initializes the filter. When forwardMultipleEvents is
true, then all events will be forwarded (depending on the value of
waitForEquilibrium). If it is false, only the first event (also depending on
waitForEquilibrium) will be forwarded.

When waitForEquilibrium is true, then an event will be forwarded only
when the difference to the previously received event is within a certain, de-
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fined margin. E.g. when waitForEquilibrium and forwardMultipleEvents

are both true, then the filter discards all events that change too much and for-
wards the first one that has a small difference (as given by maxSquareError).
After this forwarding, the filter resets and waits for the next equilibrium.

The "error", i.e. the difference between two received events, is calculated as the
squared difference between the vectors or matrices. When the error is below the
given maxSquareError, then the state is regarded as being an equilibrium. It
is important to note that the error is divided by the number of elements in the
vector or matrix for normalization.

ImageOutput This class receives vector or matrix output events from some spike
decoder and transforms the values into an image, which is immediately saved in
the file given to the constructor. It also needs the JAI library.

All of the described network input and output classes form a framework that can be
used for many purposes and which can be extended easily. Due to the use of abstract
interfaces, the inner spike coding schemes are easily interchangeable, alleviating re-
search on different schemes.

4.4 Learning

In the context of SNNs, there are currently supervised as well as unsupervised learn-
ing methods mentioned in various papers (see section 3.5). SNNs are, in the opinion
of the author, naturally aimed at unsupervised learning methods. Although the emu-
lation of typical supervised learning algorithms such as the backtracking algorithm is
possible within these networks, it does not seem beneficial to use such algorithms. For
solving problems with backtracking learning, ANNs will currently offer faster con-
vergence. However, SNNs – especially in combination with discrete event simulation
– allow more dynamics in the learning process, e.g. by making the creation and re-
moval of synapses simple and straight-forward (also refer to section 6.2). Other ways
of determining network parameters such as it is done for Hopfield networks can be
implemented without learning during the simulation (refer to section 5.3).
Therefore, in the current simulation framework, there is no support for supervised
learning algorithms; it could be added easily by introducing global learning objects
with access to all Synapse objects in the simulation. On the contrary, unsupervised
learning methods can mostly be implemented with locally available information. In the
following, the approach taken in this diploma thesis will be described. Since learning is
mostly done for synaptic parameters, the class Synapse allows two ways to implement
specific learning algorithms:
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1. By overriding Synapse or a subclass thereof, the method postNeuronFired can
be overridden. In this method, learning on solely locally available information
(i.e. all synaptic parameters, the time of the last pre-synaptic spike event and
the time of the last post-synaptic firing) can be done each time the post-synaptic
Neuron object fires a spike event.

2. By creating an object that implements the interface Synapse.LearningMethod
and registering it with every Synapse object that should use this learning behav-
ior. This object can, depending on the specific implementation, have access to as
much information as needed for the learning algorithm (for a short discussion of
global vs. local learning refer to section 6.4).

Although Synapse can, by definition, not exhibit any support for the first possibility,
the second one is supported by the inner interface Synapse.LearningMethod and the
default implementation of postNeuronFired:

Synapse.LearningMethod This interface is used for external learning algorithms that
are non-local to the Synapse object, the only defined method is

public void changeParameters(Synapse sender)

As can be seen in algorithm 2, a Neuron object will notify all of its in-
put Synapse objects of its firing by calling postNeuronFired. The de-
fault implementation of postNeuronFired in Synapse calls the method
changeParameters of LearningMethod, if it has been registered previously
(and postNeuronFired was not overridden). Obviously, since the abstract class
Synapse does not define any synaptic parameters, the used LearningMethod

object will depend on the overriding class.

For usage of this interface the reader is referred to the example simulation described
in section 5.4. The main reason for implementing an abstract interface is the flexibil-
ity that is offered by this approach. Since Java does not support multiple inheritance,
overriding Synapse for implementing learning algorithms in postNeuronFired can-
not be done in a reusable way – e.g. it would be impossible to use the same learning
algorithm for ConstantPLSynapse objects and PLSynapse objects with different re-
sponse function shapes without having duplicate code. On the other hand, learning
algorithms contained in objects which implement Synapse.LearningMethod can be
used for arbitrary classes derived from Synapse. Even if this approach is at compile-
time not type-safe for the input parameter sender, run-time type information (RTTI)
can be used to ensure at least run-time safety – as it is done in the example simulation
described in section 5.4.
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Figure 4.6: Classes handling the visualization of simulation parts.

4.5 Visualization

Visualization is performed using Java Swing components (to display the trajectories)
and internal events as well as state change events (to communicate changes in simula-
tion states).

ScrollingView This class implements a horizontally scrolling view for 2D trajectories.
The view uses world coordinates in a virtual window, defined by minimum and
maximum values, which are mapped to graphics coordinates in the resizable
simulation window. It can also synchronize with other ScrollingView objects
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so that multiple views always show the same simulation time-frame.

ViewSynchronizer This class is able to synchronize multiple ScrollingView objects
so that they always show the same current simulation time.

SpikeView This class implements a scrolling spike view where spikes are simply
drawn as vertical lines marking the simulation time points when the spikes oc-
curred. It can directly receive spike events (by implementing NeuronInput) and
will also record those spike events for drawing and logging.

PLNeuronInternalView This class implements a view for the potential and threshold
functions of a Neuron, thus its internal states. It listens to state change events of
Potential and Threshold objects and keeps a compact, internal history of the
past states as far as needed.

These visualization classes not only display the spike and state trajectories, but also
show the flexibility of the simulation framework. To allow this powerful simulation,
no changes to the core simulation classes were needed at all; instead, the visualiza-
tion classes are only registered as additional event listeners. In the same way, more
visualization, logging or statistical components could be added easily.
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Chapter 5

Experimental Results

In this chapter, a few experimental results obtained by simulations are described. All of
these simulations were created using the framework described in the previous chapter.
Since the simulation framework is based on MOSAIC, the basic structure of simulation
applications also stems from this. Therefore, all simulation applications have to be
derived from SimApplication and include a component derived from ModelPanel.
This panel will then contain all of the simulation components, including Neuron and
Synapse objects, which are normally not visible, and visualization components.
In the following sections, the basic topologies used in the simulated SNNs are shown
and the basic behaviors of the different simulation experiments are explained. A com-
parison with simulation results from the GENESIS simulator (confer section 2.2.3)
can only be given for the first simulation example because no existing, freely avail-
able GENESIS simulations of the other network types could be found; creating the
examples in GENESIS would have been outside the scope of this diploma thesis.

5.1 Simple recurrent network

This example simulation resembles an example that is distributed with the stan-
dard GENESIS simulator [BB94]. It is available under the examples directory

1 2

Figure 5.1: Topology of a simulation of a simple recurrent network acting as an oscil-
lator.
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(a) Cell 1 (b) Cell 2

Figure 5.2: GENESIS simulation results of the simple recurrent network.

(/usr/share/genesis/Scripts/ on a Debian GNU/Linux system) as MultiCell

and described by the author of that simulation as follows:

This is a simulation of two simplified, but realistic neurons in a feedback
configuration. Each cell is composed of two compartments corresponding
to a soma and a dendrite. Each compartment is composed of two variable
conductance ionic channels for sodium (Na) and potassium (K). The den-
dritic channels are synaptically activated while the somatic channels are
voltage dependent with Hodgkin-Huxley kinetics.

There is also a more detailed description of the simulation model available in the docu-
mentation, for details, the reader is referred to the file MultiCell.doc. Fig. 5.1 shows
the principal topology of the model, with two neurons being fully connected in a feed-
back loop. In this configuration, the synaptic delays are of utter importance for system
stability; without these delays the neuron potentials would quickly diverge to infinite
values. The results of the GENESIS simulation of this biologically realistic model are
shown in Fig. 5.2. As can be seen, the whole network forms an oscillator in which both
neurons periodically fire two temporally close spikes. Cell 1 fires at some small time
before cell 2 and the duration of the oscillation period is much longer than the time
between the dual, adjacent spikes.
The discrete event simulation pendant is implemented in the class
mosaic.sim.neuron.simulations.genesis.MultiCell and can be launched
by calling

java -classpath DEVSNeuron-bin-<date>.jar
mosaic.sim.neuron.simulations.genesis.MultiCell
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Figure 5.3: Discrete event simulation results of the simple recurrent network.

To achieve comparable simulation results, careful parameter tuning was required be-
cause currently there is no rule for deriving the parameters of the piecewise linear sim-
ulation model from the parameters in the compartmental model. Moreover, it turned
out that the values of the delay of the first synapse (from cell 1 to cell 2) and the weight
of the second synapse (from cell 2 to cell 1) were critical for the stability of the over-
all simulation. Therefore it might be argued that an SNN simulated using the model
described in chapter 3 is not stable with regard to its simulation parameters [Pic00b].
It might or might not be stable with regard to its input values when the simulation pa-
rameters are chosen appropriately – as there are no input values, this stability criterion
is not applicable to the present example .
Nevertheless it was possible to achieve comparable results in the firing pattern of both
neurons. Fig. 5.3 shows the firing pattern of the simulation. As can be seen, the firing
pattern of the GENESIS simulation is reproduced closely enough to prove that for
simulating this simple example, the abstractions and simplifications in the discrete
event model do not influence the qualitative properties of the network. It would also be
possible to emulate the firing behavior more closely by changing the synaptic delays,
but this does not influence the qualitative results; currently the delay of the synapse
from cell 2 to cell 1 is about 5 times higher than the delay of the synapse from cell 1
to cell 2.
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Figure 5.4: Topology of a simulation of a Cuneate-Based Network.

5.2 Cuneate-Based Network

This example simulation implements a Cuneate-Based Network (CBN) as described
in [SBMC01] and [SMB01]. A CBN models the cuneate nucleus, which is a part of
the sensory system in the brain stem. It is capable of spatial and temporal filtering of
spike trains, i.e. it has edge-detector like capabilities for amplifying the “edges” in the
input signal, can detect the “strongest” of those edges and will furthermore suppress
signals that do not change over time. The basic coding scheme of this network type is
rate coding; therefore this simulation shows that the simulation framework is capable
of computations in this coding scheme.
The topology of a CBN, as shown in Fig. 5.4, is composed of two interconnected layers
of neurons: the first layer is a competitive layer to which the inputs are connected using
restricted input windows for each competitive neuron (in the example the input window
has a size of 3) and the second layer implements interneurons. Obviously, the number
of interneurons corresponds to the number of competitive neurons as the interneurons
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form a feedback configuration with the competitive neurons.
All of the above mentioned features of a CBN can be explained by this special topol-
ogy:

• edge detection: The edge-detection is performed by the neurons in the compet-
itive layer using the given input window and appropriately chosen weights of
the respective synapses. In the example simulation, a variation of the laplacian
and sobel edge extractor operators [Cas95] has been chosen for computing those
weights.

• spatial filtering: Due to the inhibitive lateral connections in the competitive layer,
only those neurons that detect the “strongest” edges will actually fire; this be-
havior is comparable to the implementation of the winner-takes-all principle of
SOM networks in SNNs (refer to section 5.4). However, in the current simula-
tion of a CBN, only a restricted number of competitive neighbors is connected
instead of the whole competitive layer being fully connected.

• temporal filtering: Finally, the interneurons with their inhibitive feedback con-
figuration form a kind of temporal filtering which is able to extract temporal
changes in the input signal. It is important to note that this temporal filter does
not prevent the competitive neurons from firing but only lowers their firing rate
whenever their firing pattern is stable, i.e. the rate-coded input signal does not
change over time. Thus, a stable, low output firing rate of the CBN can be con-
sidered to not carry any relevant, new information.

For a more detailed description of the network features, the reader is referred to
[SBMC01] and [SMB01].
In Fig. 5.5, 5.6 and 5.7 the discrete event simulation of a CBN is shown, which is im-
plemented in the class mosaic.sim.neuron.simulations.CBN and can be launched
by calling

java -classpath DEVSNeuron-bin-<date>.jar
mosaic.sim.neuron.simulations.CBN

The first 9 views on the very top of the simulation windows show the inputs of the
network, which are simply rate coded with a constant frequency; inputs 0 to 2 (labeled
spikeview input0 to spikeview input2) have a frequency of 0.1 spikes per simulation
unit (spu), 3 to 5 (labeled spikeview input3 to spikeview input5) a frequency of 0.2
spu and 6 to 8 (labeled spikeview input6 to spikeview input8) a frequency of 1.0 spu.
Therefore, there is one “edge” between input 2 and 3 and another between 5 and 6 with
the last one being “stronger”. The last 7 views (labeled spikeview output0 to spikeview
output6) show the outputs of the network in various phases of the computation. In
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Figure 5.5: Discrete event simulation results of a CBN – initial phase.

Figure 5.6: Discrete event simulation results of a CBN – intermittent phase.
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Figure 5.7: Discrete event simulation results of a CBN – equilibrium phase.

Fig. 5.5 the initial phase of the network is shown directly after applying the input. As
can be seen, the network immediately reacts as an edge extractor, with only outputs
1 and 5 (those detecting the edges) being active. Due to the network also acting as a
spatial filter, the outputs which are close to 1 and 5 are prevented from firing. Output
5 shows more activity than output 1 because of the higher input firing rates – but the
distance is too large to be covered by the restricted width of the competitive field. After
this initial phase, the interneurons start influencing the network, causing the output
pattern to fluctuate (see Fig. 5.6). However, since the input pattern does not change
over time, the network settles down and a stable pattern emerges (see Fig. 5.7).
The presented example shows how well discrete event simulation of SNNs is able to
reproduce the behavior of a biologically inspired, reasonably complex network utiliz-
ing not only a feed-forward model with synapse weights but also synaptic delays as
computational elements.

5.3 Hopfield network

In this simulation example, a Hopfield network with graded response [Hop84] is
emulated by a SNN as described in [MN97]. For the internal representation of
neuron input and output values, temporal coding is used (refer to section 3.4)
– therefore the temporal input coder is used for providing the network with in-
put patterns (refer to section 4.3). The simulation is implemented in the class
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Figure 5.8: Topology of a simulation of a Hopfield network.

Training pattern 0 〈1,0,0,0,0,0,0,0,0,1〉
Training pattern 1 〈0,1,0,0,0,0,0,0,1,0〉
Training pattern 2 〈0,0,1,0,0,0,0,1,0,0〉
Training pattern 3 〈0,0,0,1,0,0,1,0,0,0〉
Training pattern 4 〈0,0,0,0,1,1,0,0,0,0〉

Input pattern 〈0.7,0.3,0.2,NF,NF,NF,NF,NF,0.1,0.3〉

Table 5.1: Training and input patterns for the Hopfield network simulation.

mosaic.sim.neuron.simulations.Hopfield and can be run by calling

java -classpath DEVSNeuron-bin-<date>.jar
mosaic.sim.neuron.simulations.Hopfield

In the Hopfield network model, all neurons that take part in the computation are fully
connected to each other. Fig. 5.8 shows how each neuron is connected to all others
and receives exactly one input from outside the network. The input classes are parts of
a single input coder – in this case an object of class TemporalInputCoder (refer to
section 4.3) – and therefore provide consistent input from a real numbered vector that
is given from the outside of the network. As defined in the coding scheme, the firing
times of single spike events sent by the inputs to the neurons in the computational
layer encode the values of the input vector. As the network is inherently recurrent, the
computation started by input spike events will run infinitely; the output of the network
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Figure 5.9: Discrete event simulation results of a Hopfield network – initial phase.

is therefore defined as the stable states that the neurons converge to. With SNNs, this
corresponds to a stable, repetitive firing pattern of the neurons. For detecting if a firing
pattern is stable, the class OutputFilter can be used.

In the current prototype implementation, there is a fixed set of training patterns for
computing the weights (see table 5.1) in the initialization phase. Then a single, also
fixed input pattern, which is a mixture of the first two input patterns with some noise
added, is given as input to start the network computation (see table 5.1; NF means non-
firing, i.e. the corresponding input neuron will not fire at all). As can be seen, the input
patterns are orthogonal to each other and should therefore form a very stable base for
fix-points in the weight set. The input as shown in table 5.1 clearly shows an affinity to
the first training pattern and should therefore cause the network to converge to a stable
output of training pattern 0.
In Fig. 5.9 the input spike pattern is shown in views Inputview 0 to Inputview 9. Cur-
rently the emerging, stable firing pattern shown in Fig. 5.10 is only based on the large
synaptic delays and not on the behavior that is expected from a Hopfield type network
– to converge to a stable output pattern that resembles one of the training patterns. At
the time of this writing, it is unknown to the author why the network does not show the
expected behavior since the instructions available in [MN97] and [MN98] have been
followed during creating the simulation. However, in future work it might be beneficial
to contact the authors of those papers and clarify any problems in implementing the
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Figure 5.10: Discrete event simulation results of a Hopfield network – equilibrium
phase.

theoretical concepts in specific simulations.

5.4 Self Organizing Map

This example is a simulation of a Self Organizing Map (SOM) as introduced by Koho-
nen [Koh95], but as a SNN in temporal coding. Temporal coding has – in this case – the
enormous advantage that the winner neuron in the competitive layer can be computed
fast and locally. Other SOM simulations with SNNs that use the rate coding scheme
depend on the firing rate of the competitive neurons for determining the winner neuron
in each training cycle. However, this implies that the global learning algorithm has to
wait until each neuron has fired a few times for calculating the firing rate. Therefore,
temporal coding offers significant advantages in this application.
The simulation is implemented in the class mosaic.sim.neuron.simulations.SOM
and can be run by calling

java -classpath DEVSNeuron-bin-<date>.jar
mosaic.sim.neuron.simulations.SOM

In this example, the hot-spots provided by the simulation framework for the imple-
mentation of learning algorithms are used for the first time.
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Figure 5.11: Topology of a simulation of a Self Organizing Map network.

The underlying model uses the standard SOM topology, which is shown in Fig. 5.11.
As can be seen, there is a layer of competitive neurons which are fully connected to
each other via inhibitive lateral connections and fully connected to the input layer via
adaptive synapses (that are subject to learning). Synaptic delays are not used in this
network model, only the weights are parameters of the network. Although the weights
in the inhibitive lateral connections are also changed during the learning process, they
are just decreased as the learning process advances. The calculation of these lateral
weights as well as the learning rule for the weights of the input synapses are described
in [Ruf98, chapter 7 and section 11.1]; an adapted learning rule is cited in section 3.5.
Basically, this simulation can be divided into two phases:

1. Initialization phase: First of all, the simulation tries to load a training set that has
been used in a previous run. If it finds a file called SOM_training_set.dat, it
will load the input vectors used for training from this file. If this file does not ex-
ist, a new set of training vectors is randomly generated. As described in [Ruf98],
the size of the training set – composed of one-dimensional input patterns – is 10
and the pattern values are uniformly distributed over [0.1,0.9].
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After the training set has been initialized, the synaptic weights are set: For the
input weights (the synapses connecting the input layer with the competitive
layer), the mean values of the training set are used, random noise in [−1,1]

is added to each value and the weight vectors for each competitive neuron
are normalized to a constant value λ. As with the input vectors, the simula-
tion tries to locate a file named SOM_computed_weights.dat to load previ-
ously computed weights from. In contrast, the lateral weights are initialized
as w̃k, j = 2 ·

(
0.25−mk, j/mmax

)
, where mk, j are the elements from the so-

called neighborhood matrix and mmax is the largest element of the neighbor-
hood matrix. The neighborhood matrix is defined as mk, j = |k− j|, resulting in
mmax = N − 1 where N is the number of competitive neurons. Comparable to
the handling of input vectors and input weights, the lateral weights are stored
alongside the learning rate in a file named SOM_learning_parameters.dat.
This way, the simulation can be restarted after it has been stopped.
Therefore, the input weights, which are subject to learning in the next phase, get
initialized with nearly equal values for all competitive neurons but with some
random noise (which is important for the learning algorithm to work) while the
lateral weights, which are only decreased during the learning phase, are initial-
ized with strictly deterministic values that form the neighborhood.

2. Learning phase: In this phase the network is constantly fed with input vectors
from the training set and the learning rule is applied in each training cycle. To
start the training cycles, time events are used again, but on a higher level than
for scheduling spike events. Therefore, the training cycle is performed in the
method processSimEvent, which is responsible for handling time events. Each
time this method is called by the MOSAIC framework, the neurons in the com-
petitive layer are reset, the learning rate and the lateral synaptic weights (the
neighborhood) are decreased and a random input vector from the training set is
fed into the input coder.
The input coder will then generate spike events according to the values in the in-
put vector and send these events to the competitive neurons. Assuming that the
input weights have been properly initialized, there will always fire at least one
neuron in the competitive layer. When a neuron in the competitive layer fires due
to the incoming spike events, it will influence all others via the inhibitive lateral
synapses, delaying their firing with its own spike. Therefore the firing of the first
neuron, the so-called winner neuron, will delay or possibly prevent the firing of
the other neurons dependent on the size of the neighborhood (i.e. the weights of
the lateral synapses).
For each neuron which fires, a learning method is applied to all connected input
synapses at the time of the firing (refer to section 4.4 for details on how this is
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supported by the simulation framework). In the SOM example simulation, one
global object is used for implementing the learning algorithm. This object im-
plements the interface Synapse.LearningMethod and can therefore change the
synaptic parameters of the calling synapse in its method changeParameters –
the current implementation changes only the weights because synaptic delays are
not used in the SOM simulation. For computing the change of the weight value,
the adapted learning rule stated in section 3.5 is used, but with a few changes to
use locally available information: the weight w of a calling synapse is changed
by ∆w = η · (Tout − t)/Tout · (s−w) where η is the current, global learning rate, t
is the current simulation time (i.e. the time when the post-synaptic neuron fired),
Tout is some time in the future when all neurons are guaranteed to have fired and
s is the value that the pre-synaptic input neuron represented (i.e. the respective
input value). Only the values η and Tout are global, all others including s, which
can be derived from the time the pre-synaptic neuron fired, are obtained from
locally available information. Therefore, a learning algorithm that relies solely
on information that is available locally at each synapse might be constructed in
the future – the current algorithm is a step in that direction.

To achieve the expected results, careful and long parameter tuning was necessary. It
turned out that the rates for decreasing the learning rate and neighborhood as well as
the starting values for the lateral weights (forming the neighborhood) were critical for
the overall performance. In contrast, the parameters in the learning rule for changing
the input weights did not seem to have such a major influence – maybe the range from
which they can be chosen from is larger than those of the neighborhood parameters.
With the current parameter values, the simulation shows the expected behavior: the
competitive neurons specialize on specific input patterns and after enough training cy-
cles the inhibitive lateral connections prevent neurons other than the winner neuron
from firing. In the simulation source code, the parameters are defined as constants and
can therefore be examined and changed very easily. Fig. 5.12 shows that, before train-
ing is conducted, the neurons react strongly to the random input pattern, with all of the
competitive neurons firing at some time. As described in [Ruf98, chapter 7 and section
11.1], about 4000 training cycles, with one random input pattern per training cycle,
were necessary. On a standard desktop workstation with an AMD Athlon 1700+ CPU
it took about 4000 seconds to compute these learning cycles, so that on average one
learning cycle can be done in one second. However, the first 100 learning cycles took
over 250 seconds and later cycles significantly less; this is a direct consequence from
using discrete event simulation. Due to the inhibitive lateral connections, other com-
petitive neurons are prevented from firing in the later stages of the training. Therefore
those neurons that do not fire anymore do not need to be taken into account, allowing
the training cycles to be handled faster. Fig. 5.13 shows the network behavior after
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Figure 5.12: Discrete event simulation results of a SOM network – before training.

Figure 5.13: Discrete event simulation results of a SOM network – after training.
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about 4000 training cycles – one cycle is defined between two adjacent reference input
spikes, painted in green in the simulation window. As can be seen, now only one or
very few neurons respond to a given input pattern, which is the expected behavior.

5.5 Comparisons

Since the new discrete event model for simulating SNNs uses a different approach in
simulation than the currently used models, its characteristics might be quite different.
One characteristic is obviously shared with the underlying technique of discrete event
simulation: that the running time is dependent on the activity of the system respectively
on the activity of parts of the system.
Current SNN simulation tools normally base on continuous simulation. This means
that the state of every neuron and every synapse in the neural network needs to be
computed at certain simulation time steps (which normally have a fixed width), in-
dependently of their current activity. Although the concept is very well suited for bi-
ologically realistic simulations and is straight-forward to implement, it might not be
the best technique for simulating large networks when focusing primarily on compu-
tation. The reason is that large networks are expected to have less concurrently active
neurons, thus in principle enabling good scalability. However, due to the nature of the
computational model, continuous simulation can, when not being implemented in a
highly optimized way, only scale linearly with the number of neurons and synapses.
This leads to the tremendous advantage that for SNNs that have a low percentage of
concurrently active neurons, a significant simulation speed-up can be expected when
using discrete event simulation instead of continuous simulation. This can be achieved
while still computing the neuron potentials as accurately as possible (only restricted by
the accuracy of the underlying computer architecture and programming environment).
Currently the example simulations described in the above sections do not allow a di-
rect comparison with continuous simulation, mainly because they were created es-
pecially for testing and verifying the developed simulation framework (see chap-
ter 4); simulations with a defined input and output set and a clearly defined prob-
lem still need to be created. Therefore, one of the main goals of future work should
be to rigorously compare the characteristics of both simulation models qualitatively
as well as quantitatively. For representing continuous simulation, the freely avail-
able GENESIS simulator [BB94] will be used. Currently many scientific groups use
specific simulation programs written especially for the respective focus of research
[Ruf98, SM01, MN97, QC01, CBG01]. There are only a few standard simulation tools
that are general enough to be used in different simulation situations. One of them is
GENESIS, a simulation tool developed at the University of Berkeley, California and
used by neuro-biologists as well as computer scientists for conducting research on bi-
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ologically realistic neural networks. Since its main goal is to be biologically realistic,
neurons and synapses are typically modeled with numerous compartments and simu-
lated according to the Hodgkin-Huxley equations (refer to section 2.2.3). GENESIS
seems to be a good representative for simulation tools using continuous simulation be-
cause it is widely used and accepted. For representing the technique of discrete event
simulation, the simulation framework developed in this diploma thesis should be ex-
tended and optimized to suit the needs of conducting the rigorous comparison. The
resulting simulation system should also be general, being a discrete event simulation
pendant to GENESIS.
Therefore, simulation results obtained with GENESIS should be compared to simula-
tion results obtained with the created simulation system:

• For qualitative comparison, the computational characteristics of the simulated
SNNs will be the determinative factor, since this diploma thesis and possible
future work mainly focus on making SNNs more usable in practical technical
applications. These computational characteristics might involve the ability to do
spatio-temporal filtering, to reproduce some trained patterns or to classify pat-
terns. A sub-goal will be to specifically select some network types and applica-
tions that allow sensible qualitative comparisons.

• For quantitative comparison, the simulation speed will be the determinative fac-
tor. By modeling a specific network structure both in GENESIS and the new
simulation framework – presumed that the qualitative features are comparable –
the simulation speed will be measured in terms of advanced simulation time in
some fixed real time; a second method will be to determine the largest number
of neurons and synapses in some network structure that still can be simulated
in real-time. These two measuring units allow a numerical comparison of the
different simulation techniques.
Although larger networks are expected to typically have a lower percentage of
concurrently active neurons, thus allowing large network simulations to scale
better than linearly, there will probably be cases where continuous simulation is
better suited than discrete event simulation. The comparison of the simulation
techniques will allow to make statements about the usability of discrete event
simulation in different cases and application domains and might allow to give
recommendations on the use of simulation techniques for given tasks. Probably
there will also exist some critical parameters that influence the simulation speed
of event simulated SNNs drastically. Another sub-goal of the comparison will
be to find some of those critical parameters.

Summarizing it can be said that a rigorous comparison between continuous and event
based simulation of SNNs still has to be conducted to fully prove the advantages of the
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simulation model proposed in this diploma thesis; however, as it has been presented
in this section, a reasonable comparison cannot be done easily and is therefore outside
the scope of this diploma thesis.
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Chapter 6

Advanced Techniques

In this chapter a few, more advanced simulation techniques will be shortly discussed.
These techniques are currently not used or implemented in the simulation framework,
but some are at least partly supported by already defined interfaces. This chapter there-
fore lists some of the possible future enhancements or directions of development; for
few of them, it still has to be decided if they are needed to make future simulations
more powerful or if other, different techniques might be more advantageous. However,
currently the methods described in the following sections seem to offer many bene-
fits for making simulations faster, more flexible or more powerful. It is important to
note that the first three techniques are completely independent of each other, making it
possible to implement any of them without interfering with the others at all.

6.1 Building blocks

One possibility to ease the creation of large, complex SNNs is to construct them hi-
erarchically: parts of the SNN can be composed of a number of simpler parts that are
connected to each other via clearly defined inputs and outputs. These compositions can
again form components of a larger network block themselves, also having defined in-
put and / or output interfaces. The main advantage of building blocks, besides making
it possible to handle the complexity of large SNNs with well-known system theoretical
methods, is that these building blocks are reusable. Such blocks could be parameter-
ized and thus be seen as black boxes with defined input and output behavior (e.g. a
visual 2D filter modeled after the cuneate nucleus in the human brain).
As sketched in Fig. 6.1, a SNN can be composed of different blocks that are connected
via their input and output ports, with different components handling different parts of
the whole network’s inputs and outputs. However, the same network can also be seen
in a hierarchical view, showing how the components form a tree structure with the
network being the root. This tree structure resembles a holarchy built from holons –
entities that are a whole for themselves and a part of some other whole at the same
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Figure 6.1: Networks composed hierarchically of simpler, reusable components.

time (cf. [Pic98, Pic99]); the subtle difference between a hierarchy and a holarchy is
that a holarchy does not allow the inclusion of parts from a higher level in parts of a
lower, e.g. a molecule contains atoms but not vice versa.
In the current simulation framework, this concept has been used to build the network
input and output converters as described in section 4.3. Those converters offer a well-
defined input or output interface of the whole SNN, effectively transforming it into a
black box to outside components. Although the example simulations which implement
various network topologies (see chapter 5) are currently not implemented as building
blocks that can already be integrated into other SNNs, care has been taken to make
them as general as possible – most of the parameters that control the topology and
behavior of the networks have been implemented either as parameters or as constants.
Thus it should be simple to convert those example simulations into parameterizable,
black-box building blocks as soon as interfaces for constructing holarchies have been
defined and are supported by the simulation framework.

6.2 Dynamic topology

Within the current simulation framework, which is implemented in a clean, object-
oriented manner, there is the possibility for handling the number of neurons as well
as connections, i.e. the synapses, within an SNN dynamically. Because of the inherent
event based nature of the simulation model, neurons are completely independent of the
number of input and output synapses which are connected to them, even at run-time. In
fact, neurons only maintain a dynamically managed list of synapses from which they
receive input (for providing those synapses with post-synaptic firing events used for
learning purposes, see section 4.4) and to which they should send their firing events;
there is no other information necessary, and therefore available, in the neurons. Both of



6.3. PARALLEL SIMULATION 87

those lists can be changed easily during run-time. Of course, it is also possible to add
and remove whole neurons during run-time because they can be connected to others
on the fly by creating appropriate synapses.
Therefore, the simulation framework lends itself naturally to techniques like pruning
and growing [LDS+90, PH95], i.e. changing the network size and connectivity dur-
ing learning. These techniques can now be implemented easily in specific learning
algorithms – possibly even without weight normalization which is biologically contro-
vertible but used by some current algorithms [LO01].
Taking the ideas from the previous section into account, the technique of dynamic
connections can be generalized to work at any layer of the hierarchy: on the layer of
neurons and synapses, i.e. inside a building block, it can be used to create and remove
synapses due to learning rules; on the layer of building blocks, it could be used to
dynamically connect the inputs and outputs of different building blocks to each other,
e.g. because of blocks with different parameters being varyingly successful in solving
a given sub-problem.
With the current simulation framework, which builds on event simulation, dynamical
interaction between system components during run-time becomes possible and can be
conducted easily. These new possibilities might well lead to the development of new
learning algorithms that supersede current ones in quality and speed.

6.3 Parallel simulation

As the simulation of neural networks, especially of the more complex SNNs, requires
high computational power to run in real time even with careful optimizations, a single
processor machine might be too slow to tackle large problems. Although available
processor speed currently seems to abide by Moore’s Law [Sch97], there will always
be problems that are too complex for single processor machines in terms of execution
time or memory consumption. Therefore, at the moment the only way to approach
such problem areas seems to be the use of parallel systems, i.e. systems composed
of more than one interconnected processors; in this diploma thesis the term parallel
simulation is used to describe a simulation running on a parallel computer system.
Parallel simulation puts the reduction of execution time in the main point of view as
opposed to connecting geographically dispersed simulations, which is referred to by
distributed simulation.

As has been outlined in previous chapters, SNNs – as a model of neural networks –
are parallel in their innermost nature. Therefore they nearly demand the application of
parallel simulation. But, and this could be seen as a disadvantage of discrete event sim-
ulation, a causal chain emerges due to the events sent from one simulation component
to the other [ZPK00]. To satisfy this causality, events have to be processed in a strict
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order which is partly sequential, imposing a limit on the degree of possible parallelism.
With continuous simulation, causality is always satisfied when the parallel processors
run the simulation with the same speed; but with discrete event simulation, care has to
be taken to assure correct parallel execution.
In the last two decades, a few approaches to parallel simulation have been developed,
which can be categorized as follows:

• conservative: Introduced in the late 1970s [CM96, CM81], conservative parallel
discrete event simulation principally strictly avoids causality violations. There-
fore, events that constitute dependencies between different components are exe-
cuted in the order of their timestamps.

• optimistic: In contrast to conservative approaches, optimistic parallel discrete
event simulation allows the execution of events that might possibly violate
causality; but it supports a rollback mechanism for annihilating the effects of
events which were executed ahead of time and caused a causality violation. One
implementation of this approach is the Time-Warp algorithm [JS85, JBW+87].

Based on these principles, the underlying DEVS simulation system – currently
MOSAIC – could be extended to a parallel discrete event simulation (PDES) system.
When the object-oriented concept is followed closely, only minimal changes should be
necessary to adapt the current simulation framework for utilizing parallel simulation.
However, modifications on a higher level, namely on the level of specific simulations,
might become necessary to minimize the dependencies between simulation compo-
nents and therefore achieve a significant speed-up in the parallel simulation. The use
of closed, black-box building blocks with restricted sets of input and output ports might
help in achieving low coupling between and high coherence in those blocks. This as
well as the use of local learning algorithms (see next section) minimize the dependen-
cies and are thus advantageous for efficient parallel simulation.

6.4 Local learning

For various topologies of neural networks there exist different learning algorithms
which are more or less capable of tuning the network parameters to achieve a de-
sired behavior. However, many of them depend on at least partially global informa-
tion such as some error value from other layers (cf. [Zel94, chapter 8]) or a “winner”
among some group of neurons (cf. [Zel94, chapter 15]). Such learning techniques, in
this diploma thesis called global learning, are disadvantageous because of mainly two
problems:
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• It is very difficult, if not impossible, to achieve reasonable speed-up due to
the use of parallel simulation as described in the previous section; gathering
all the information needed for learning almost always requires synchroniza-
tion between the parallel processors. Therefore the simulation speed that can
be achieved is drastically limited with the learning algorithm representing the
bottleneck.

• The use of such global information, which is not available locally at those com-
ponents where learning happens (normally the synapses) is biologically ques-
tionable (a good summary can be found in [KK00]).

Therefore it might be much better to develop local learning algorithms that utilize
solely information which is locally available to the component that is modified by
learning, e.g. the synapse. In the current simulation framework, a PLSynapse object (a
Synapse object with piecewise linear response function) has the following information
locally available: its own weight and delay parameters, the time of the last firing of the
pre-synaptic Neuron object and the last firing time of the post-synaptic Neuron object
(which is biologically motivated by backpropagating action potentials).
Particularly in the context of parallel simulation, local learning algorithms might of-
fer enormous increases in simulation speed because of less interdependencies between
simulation components. The adapted version of a SOM learning algorithm presented
in section 5.4 is a first approach to a truly local version of SOM learning. Currently it
seems that unsupervised learning methods are generally better suited for local learning
because supervised methods always need the desired output value or state in addition
to the output produced by the network. This desired output must be non-local by defi-
nition – it is given from the outside of the network by some “trainer”.
But there is also some drawback of local learning algorithms: They might collide with
the utilization of dynamic synapses (refer to section 6.2). Currently it is unknown to
the author if it is possible to locally determine the necessity for creating or removing
simulation components, such as neurons or synapses – this should be a topic of future
research.
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Chapter 7

Conclusion and Outlook

In this diploma thesis, a new model for simulating SNNs efficiently has been intro-
duced, backed by a prototype simulation framework which already implements it. Af-
ter explaining the currently know theoretical foundations in chapter 2, the model has
been presented in chapter 3. The most important aspect, which differentiates this new
model from other ones, is the use of discrete event simulation (cf. section 2.3). To
enable the efficient simulation by calculating the neuron firing times in advance, the
model utilizes piecewise linear functions; a formal syntax for computing with piece-
wise linear functions has been introduced (cf. section 3.1) and algorithms for merging
– used for calculating the effect of a synapse response on the post-synaptic neuron’s
potential – as well as intersecting two functions – used for calculating firing times –
have been described and implemented (cf. sections 3.2 respectively 3.3). These algo-
rithms form the basis of the implemented prototype simulation framework; it is built
around neurons and synapses which communicate via internal system events (cf. chap-
ter 4). As could be seen, the basic structure of the framework is very abstract, allowing
many different features to be implemented. One such possible enhancement would be
to use other function types in addition to the currently used piecewise linear ones –
maybe polynomial or spline based functions might be beneficial to solve some given
problems efficiently.
Moreover, a few example simulations were performed to show the current features of
the simulation framework (cf. chapter 5). Starting with a very simple feedback oscilla-
tor configuration, the main strengths of the framework were shown. This first example
was chosen to show that simple simulations can be built easily but automatically utilize
the full power of event based simulation. A simulation of a biologically inspired filter-
ing network, a CBN, was presented as the second example, showing how the firing rate
coding can be used to feed input into an SNN. To show that SNNs can indeed emulate
standard ANNs, the third example shows the simulation of a Hopfield type network
in temporal coding. This example clearly benefits from the discrete event simulation,
since the recurrence of the Hopfield network is inherent, caused by the fully connected,
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feedback topology; it does not have to be implemented especially but the SNN uses
standard neurons and synapses without any modification. There is also no need for
“steps” in the simulation, usually supervised globally. Finally, the last example is a
more complex one, simulating a SOM network in temporal coding. It uses the frame-
work’s capabilities for implementing learning algorithms by defining a partially global
learning mechanism – but the aim should be to use local learning algorithms.

Although at the moment there are no direct comparisons to the use of continuous sim-
ulation, the potential of this new technique is clearly visible. Due to the application
of discrete event simulation techniques it should be reasonable to simulate large-scale
neural networks with thousands of neurons on standard workstations, also facilitat-
ing the investigation in the influence of different function types on the computational
power of spiking neurons. This expectation is based on the fact that the application of
discrete event simulation for ecosystems showed a speed-up of about 100 (!) [Moo96].
This significant increase in simulation speed can – in addition to the better scalability
– be used to drastically increase the network size. For more sophisticated simulations,
the number of neurons is expected to be the determinative factor. Furthermore, the ad-
ditional degrees of freedom due to the freely definable shape of all functions in the
system will allow to conduct experiments on the importance of various aspects of the
model on the computational power. Without being restricted to finding a closed mathe-
matical representation, this freedom in modeling function shapes can allow completely
new computational elements to be built out of spiking neurons. One aim of future work
should definitely be to create simulations that are currently not possible with continu-
ous simulation. However, future research has to show that the assumptions that were
made hold true and that effects of biological neural networks (such as synchronization
between quasi-chaotically firing neurons) are reproducible with this model.
Finally, in chapter 6 a few possible directions for future developments were suggested.
These enhancements might help in mastering the complexity of large neural networks,
enabling the use of new learning algorithms or achieving additional simulation speed-
up. More advantageous developments might come from research on information en-
coding – intuitively it seems that much more complex coding schemes are used in
biology. Although empirical studies suggest that all of the different coding schemes
that have been discussed in this diploma thesis (temporal coding, rate coding and pop-
ulation coding) are used in some areas of the human brain [RWdRvSB97], they might
as well be used concurrently. When thinking about the fast information processing that
the visual sensory system is capable of, together with being the human sense that also
provides more detail information than any other sense, exactly one idea comes to mind:
that spike coding resembles some sort of fractal coding, the first spikes carrying course
information but transmitting it quickly and following spikes delivering more and more
details.
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Concluding it can be said that this diploma thesis can only be a small step into the fu-
ture adoption of SNNs in practical applications. Although some may have the opinion
that future research on neural networks will further differentiate the foci of computer
scientists and neuro-biologists [Zel94, page 574], the author believes that the contrary
may be true: SNNs might offer advantages for applications in computer science and
for research in neurobiology, allowing both communities to share insights. Allowing a
fast simulation of large networks by applying discrete event simulation is hopefully a
step into this direction.
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