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Abstract—Mobile devices such as smart phones have become
one of the preferred means of accessing digital services, both for
consuming and creating content. Unfortunately, securing such
mobile devices is inherently difficult for a number of reasons.
In this paper, we systematically analyze the technical issues
of securing mobile device platforms against different threats
and discuss a resulting and currently unsolved problem: how to
create an end-to-end secure channel between the digital service
(e.g. a secure wallet application on an embedded smart card
or an infrastructure service connected over wireless media)
and the user. Although the problem has been known for
years and technical approaches start appearing in products,
the user interaction aspects have remained unsolved. We
discuss the reasons for this difficulty and suggest potential
approaches to create human-verifiable secure communication
with components or services within partially untrusted devices.
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I. INTRODUCTION

Mobile devices in their various physical incarnations such
as smart phones, wrist watches, glasses, or other forms
of wearable computing are replacing traditional clients for
accessing information services. They already store highly
sensitive and private data and are involved in processing
monetary transactions; in the near future, they will most
likely also process medical data and represent the user in
even more situations by acting as their digital proxy, e.g.
for digital identification.

With the transition from stationary to small mobile de-
vices, users gain mobility, sensing, context awareness, and
integration, but lose extensibility based on well-known hard-
ware interfaces. In the past, these interfaces (e.g. USB,
PCMCIA, SD, or PCI) have been used on desktops and
laptops to connect trusted hardware components (e.g. smart
card readers with integrated keypad, USB mass storage
devices with fingerprint readers, etc.).

From a security point of view, these integrated security
devices can provide trusted services such as key storage or
cryptographic computations even under the assumption of a
(partially) untrusted platform as the rest of the computing
system. In fact, class-2 smart card readers with integrated

pinpads are a required hardware component in many national
laws on so-called ’advanced’ electronic signatures with
’qualified’ certificates [1] to prevent the well-known problem
of malware logging – and invisibly using – the PIN codes
that are required to unlock private keys stored on users’
smart cards. On the one hand, current mobile devices do not
easily offer the required interfaces to connect such trusted
hardware components, nor do we expect end-users to desire
carrying a second device to use only for security relevant
input or output. On the other hand, the software stack of
mobile devices like smart phones or watches cannot be
fully trusted and will not be able to reach sufficiently high
levels of certification (such as CC EAL 4+) because of the
inherent complexity of the combined set of kernel, libraries,
system binaries, runtime execution environments, and in-
stalled applications that almost necessarily leads to security
relevant bugs (e.g. [2], [3]). We therefore face the problem
of providing comparable – or for some future scenarios even
better – security on hardware/software platforms that cannot
be fully trusted.

Traditionally, cryptographic protocols have been applied
to secure communication over untrusted channels, e.g. by
using TLS/SSL to connect to a web server over wireless
channels. The problem in this case is that end users cannot
directly execute cryptographic protocols without any help:
they cannot directly verify digital signatures or perform a
decryption operation for a modern cipher. This leads to
the central open issue in mobile device security: how can
users trust their communication with an embedded secure
hardware component (e.g. a smart card embedded within
their smart phone) when they cannot realistically trust the
normal user interface of their device (which is built upon
many layers of complex software components)?

II. SECURITY THREATS FOR MOBILE DEVICES

Before discussing specific technical approaches, we an-
alyze the security threats that current mobile devices and
their users face. We illustrate the threats with the following
use cases in mind: physical access control (smart phone as
wireless key), mobile payment (smart phone as credit/debit
card or with locally stored digital coins such as Bitcoins [4]),



the smart phone as identity document (virtual passport,
driving license, etc.), and the smart phone as access terminal
for remote data (e.g. company email, ERP, etc.). Note that in
contrast to Egners et al. [5] who distinguish between owner
threats, platform threats, threats to other users, and mobile
network operator threats, we focus on threats to the end user
and their data (owner threats) as the most challenging class.
In contrast to La Polla et al. [6], we do not assume mobile
phones to be different from desktop/laptop type systems
in terms of CPU and/or memory capability, but focus on
usability and the context of use as the main distinguishing
factors.

All of the above use cases assume the basic security re-
quirements, namely that user data should remain confidential
(C), that user data integrity (I) should be protected, and
that this data and services need to remain accessible (A) to
authorized users. We can easily derive that the corresponding
threats are leaking private data, modifying user data, or
rendering the device or its communication inaccessible.
These abstract threats translate to more detailed threats on
different aspects of the mobile device and its use:

• Physical access (loss, theft, borrowing): Devices under
the physical control of illegitimate third parties should
still protect the private data (e.g. digital coins or the
identity documents) of their legitimate owners. This
is also referred to as a “malicious user” threat and
is currently mostly addressed for loss or theft by on-
device encryption (cf. next section) but largely open
for borrowing of mobile devices [7]. A sub-class is
the illegitimate use of devices by their owners to e.g.
circumvent copy protection schemes (which falls under
platform threats in the classification in [5])

• Communication: As in most related work, we assume
a Dolev-Yao attacker on all wireless channels: an
adversary can eavesdrop, delay, drop, replay, spoof,
and modify messages and masquerade as any sender.
Additionally, relay attacks e.g. on the embedded smart
card may not directly attack the cryptographic protocol,
but still be able to exploit communication [8].

• Platform: Due to standard security issues in operating
systems, libraries, or applications, the platform itself
can be attacked with the aim of violating any of the
security assumptions, e.g. to read private user data,
modify data, or perform a denial-of-service attack. We
can further distinguish between:

– External attacks exploiting any of the multitude of
wireless interfaces (e.g. WLAN, Bluetooth, NFC,
or cellular network such as UMTS) or on protocols
of upper layers (e.g. HTTP, HTML parsers, etc.)
may be able to directly access private data or lead
to remote code execution.

– Internal attacks may be performed by installing
malicious apps to either read sensitive data based

on standard application permissions (granted by
inattentive users or not properly enforced by the
platform) or might exploit further privilege escala-
tion issues [3] to gain full access to the platform
with arbitrary permissions.

• User interaction: The most difficult class of threats con-
cerns user interaction: installed applications (malware)
may try to fake the look and feel of other apps or
platform components, display erroneous or fake data,
capture user input with key/touch logging, and mislead
or confuse the user into making wrong decisions. These
threats are difficult to address because they not only
involve technical, but also psychological and poten-
tially social aspects, e.g. by exploiting peer pressure
or pretended authority in social engineering attacks. We
discuss the major differences to laptop/desktop systems
in more detail below (see section IV).

III. TECHNICAL APPROACHES

From a technical point of view, addressing the threats
to end-user data and services requires securing all involved
layers of current mobile device platforms:

1) Hardware executes all firm- and software, and there-
fore a minimal set of trusted hardware is required
as the root of the trust chain. Although TPMs have
been offering secure key storage and code execution,
monitoring of the boot process, and extended protocols
for remote attestation (allowing a device to provide
proof to a remote service that it is only executing
certified software) for laptops, security issues were
found [9] and they have not been widely integrated
into off-the-shelf mobile phones or similar devices
so far. Instead, secure elements (SEs) are starting to
appear as part of the NFC hardware stack in the form
of embedded smart cards implementing the JavaCard
standard.
SEs can be utilized for secure key storage and crypto-
graphic operations, but cannot (at the time of this writ-
ing) support monitoring the boot process to provide a
trust anchor for code executed on the main application
processor (AP). Therefore, implementing secure boot
of the main mobile operating system (the interface
to the next layer) still requires additional hardware
support to verify the boot loader code. In combination
with hardware compartmentalization features such as
the ARM TrustZone, SEs can be used as a basis for
secure mobile devices. Note that we do not assume
the mass storage (e.g. NAND flash) to be secure on
the hardware layer, but that – with physical access to
the device – all mass storage can be read or modified.

2) Platform support includes both kernel (executing with-
out hardware restrictions on the AP) and user space
(restricted by the AP) components, which should be
written with secure coding practices to prevent typical



classes of code-level security vulnerabilities (such
as buffer overflows, missing input validation, etc.).
Additionally, the platform should isolate applications
against each other using sandboxing and verify exe-
cuted code based on code signing. However, realisti-
cally we always have to assume security relevant bugs
in the code due to the inherent complexity of current
mobile operating systems (cf. [2], [3]). We therefore
suggest that two specific security measures should be
added on the platform layer:

• On-device memory encryption (as implemented
e.g. by Android and iOS) is an effective safeguard
against malicious user threats. Even under direct
physical control, sensitive user data cannot be
decrypted by attackers as long as a sufficiently
long cryptographic key has been used and that
key is not leaked by the platform. The interesting
challenge is how to store the key; either end-
users need to enter the key (or a password from
which the key can be derived) at bootup with the
obvious trade-off between usability and security,
or it needs to be stored within a secure hardware
component such as an embedded SE and unlocked
with secure user authentication (see below).

• To improve the security of current sandboxing
approaches, virtualization can be used to address
attacks against the platform by keeping the re-
quired trusted code base as small as possible (see
e.g. [10] for a brief introduction based on the older
Symbian OS architecture). Only the virtualization
layer – often called hypervisor – needs to become
part of the trusted base, as the main operating
system (e.g. Android) cannot realistically be as-
sumed to be secure. ARM TrustZone supports
splitting code running on the AP into trusted and
untrusted parts, and starting with the Cortex-A15
generation, supports full hardware virtualization
to assist existing hypervisors (e.g. Xen or KVM).
An important question concerning sandboxing and
virtualization that has not yet been fully addressed
is that of granularity. We suggest that applica-
tion sandboxing, multiple users, zones (cf. ’faces’
in [11]), and virtualization of full OS instances
are complementary and will be used in parallel for
solving different use cases (such as phone sharing
vs. solving the bring-your-own-device problem).

3) Apps should ideally also be implemented with secure
coding guidelines to avoid data leaks on the appli-
cation level. However, with the assumptions of third-
party app markets and low entrance barriers for app
developers, we have to assume apps to be insecure
and therefore require the platform to protect itself
from malicious apps (see above) and focus on securing

communication between apps, infrastructure services,
and users (see below). For an extensive survey on
previously suggested approaches for proactively or
reactively detecting security breaches by malicious or
faulty applications, we refer to [6].

4) Communication channels can be secured effectively
with well-known cryptographic protocols such as TLS
or IPsec to prevent eavesdropping or manipulation
of user data by any parties in-transit. This includes
attackers on the (wireless) transfer channels as well as
malicious apps executed on the phone. With regards
to confidentiality and integrity of communication, the
problem is mostly solved (as long as the cryptographic
primitives remain unbroken and keys are not leaked).
The remaining challenge is authenticating those de-
vices or services that are communicating with each
other, which requires the user in the loop [12] to
verify bootstrapping of cryptographic protocols and to
prevent man-in-the-middle attacks under the assumed
Dolev-Yao attacker.

5) User interaction involves two aspects:
• User authentication is required to ensure that the

correct user (typically the owner) is interacting
with the device and as additional part to safeguard
against malicious user attacks. In addition to stan-
dard password/PIN entry, (static and/or dynamic)
biometric features may offer a better trade-off
between usability and security, but can be difficult
to secure against recorded input data [13]. To
further alleviate that trade-off, Riva et al. propose
a more dynamic determination of authentication
events [14] that seems a a good step forwards.

• After successful authentication, the user interface
itself has to be made secure so that users can rea-
sonably assume that the data they view and enter
is not leaked or modified by other application code
running in parallel on the same device.

Figure 1 summarizes the existing and currently missing
technical parts required to create a secure personal mobile
device.

IV. USABILITY ISSUES

Although the most prevalent classes of mobile devices
currently used for accessing information services (smart
phones and tablets) no longer need to be assumed to have
limited resources in terms of CPU or memory capabilities
(in contrast to the assumptions in [6]), there are significant
differences from a usability point of view that severely
impact their security design:

• Mobile devices are assumed to be personal devices,
even more so than laptops. Especially smart phones
are hardly shared with others, as they often act as a
personal assistant in terms of routines of (professional
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Figure 1. Overview of technical components: trust chain indicated with
arrows, currently missing parts in red, end-to-end secure channel marked
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and personal) daily life. This assumption creates an
interesting ambivalence in terms of usable security: On
the one hand, these mobile devices are often used to
keep highly personal and private information, such as
messages, pictures, videos, calendar entries, contacts, or
location and itinerary data. On the other hand, the same
assumption of being a highly personal device often
leads to a puzzling neglect of security best practices,
such as using long passwords for authenticating to
the device or the use of on-device encryption. Many
anecdotal and semi-formal user studies show that only
a minority of smart phone users enables any form of
regular authentication at all (and often only if forced by
security policies set by administrators of some organi-
zation). Lacking hard psychological evidence, we can
only assume three underlying causes for this obvious
conflict:
a) The assumption of a smart phone being a highly
personal device carries the implication that the device
is under the sole control of the respective user, because
it is carried close to the body. Although this may be
true most of the time, recent statistical data on mobile
phone theft shows that it is a dangerous assumption
from a security point of view. b) Following security
best practices is bothersome (slow and error-prone)
with the limited user input/output capabilities of current
mobile devices. c) Users are unable or unwilling to
devote explicit effort to security issues. The latter two
issues can be attributed to further differences to the
laptop/desktop class of devices as discussed next.

• The user interface is – after battery runtime – the
biggest remaining technical limitation of current mobile
devices: touch screens with on-screen keyboards and/or
small thumb keyboards are not sufficiently efficient

for regularly entering long passwords. Even security
conscious users will find it hard to justify the time
overhead of entering passwords on these limited input
methods. Security measures therefore have to cope with
user input limited in length and duration.

• Mobile devices are by definition used in different
locations and in different contexts. Therefore, users
will rarely be able to commit their undivided attention
to the use of their device, but will have to remain
aware of their surroundings and focused on the real-
life interactions (e.g. crossing a busy road while trying
to authenticate to their smart phone to read the SMS
that has just been received). For this reason, security
measures need to be as unobtrusive as possible, or
users will – if given the choice – simply deactivate
them. Additionally, security relevant interaction will
also take place in a mobile context, and eavesdropping-
type attacks (referred to as shoulder surfing in the
context of authentication methods) can therefore not
be ruled out by assuming a secure location (such as
the user’s office or home). All security measures have
to take the multitude of potential contexts of use into
account.

• The proliferation of mobile devices gives a wider
range of the world population access to informational
services. Market analysis data suggests that we already
have more smart phones accessing Internet services
than all laptop/desktop type systems together. This
implies that more end users with no training or previous
exposure to computer systems use their mobile devices
for security critical transactions. In the traditional do-
main of laptop/desktop systems, many users received
some form of training on their first contact with com-
puter systems, and these introductions often included a
part on security best practices. With wide availability
of cheap smart phones outside the traditional area of
computer systems, the number of untrained end users
grows significantly, and all security measures therefore
have to become intuitive.

The implication of these differences from a security point
of view might be summarized as “users don’t care about
security”. We argue that this is not the case, but that products
have not yet been able to provide a sufficient compromise
between usability and security that takes into account all
these differences from a usability point of view. Especially
the two issues of untrained users being unaware of the
implications of security measures and of limited attention
to security measures are the main cause for the difficulty of
establishing secure communication with end users.

V. UNSOLVED PROBLEM: END-TO-END SECURE
CHANNEL TO THE USER

With the technical approaches outlined above (section III),
we can create a a chain of trust to secure a device platform



starting from its power-off state: under direct control of the
legitimate owner and starting with secure hardware as trust
anchor, a chain of signed code (boot loader, hypervisor,
kernel, platform, apps) could prevent the installation and
execution of malware. In combination with encrypted mass
storage and secure key storage in an embedded smart card, a
mobile device can implement a complete secure boot process
and therefore provide a protected environment as long as all
signed code is reasonably secure (apps do not have to be
assumed universally secure).

Current approaches developed for the mass-market (e.g.
ARM TrustZone and the Mobicore secure OS) provide a
comparable technical solution and extend it with the secure
user interface part executed alongside the main operating
system so that the standard user interface elements (e.g.
the Android UI elements) no longer have to be trusted
(cf. Fig 1). However, two problems remain, as we have to
assume malware running alongside trusted code in the form
of untrusted third-party apps executed on a partially trusted
(not malicious, but potentially exploitable) OS, and we have
to assume users to be not as diligent as we would like them
to be from a security point of view (section IV).

A. Securing output

Even with a secure UI (such as Mobicore) assisted by
hardware virtualization (such as ARM TrustZone) and an
embedded smart card (such as an NFC secure element),
nothing prevents a malicious app from trying to fake the
user interface that is normally presented by the secure
UI and therefore manipulating output from a presumably
secure app/service to the user. The reason is that both
the trusted and untrusted software components rely on the
same input/output modalities – the single touch screen in
the case of current smart phones. Although some solutions
have been developed towards a secure GUI on desktop-type
systems (see e.g. the X11 windows extensions by Feske and
Helmuth [15]), mobile devices require different approaches
to visualization: window managers and the resulting window
decorations are rarely available, and running applications
often use full screen modes. Under the assumption of appli-
cations with access to all parts of the screen, we therefore
have to deal with malware trying to copy the look and feel
of other parts of the (secure) system.

We explicitly repeat that securing output to the user is
significantly harder than communicating with a backend
service or another device, because users cannot realistically
verify digital signatures or perform decryption operations
without the help of computing devices. Therefore, we cannot
rely on the standard approach of using a cryptographic proto-
col to secure communication through untrusted components.
Furthermore – considering the usability issues discussed
above – end users would not devote the required effort
and attention to verifying their end of a cryptographically

secured communication even if they were capable of doing
so.

The only possible solution to provide users with the
required visual cue in an intuitive, unobtrusive, and low-
effort manner seems to be additional hardware. Various op-
tions seem suitable, from a simple RGB LED that indicates
which virtual guest is currently controlling the UI to a
secondary display under exclusive control of the (limited)
trusted components. However, the really interesting question
is not the technical implementation, but standardization on
the user interaction: will everybody agree on one standard
that users can become used to and that they will actually
check (unobtrusive, but noticeable for every secure interac-
tion, intuitive, understandable, and documented for first-time
users)?

B. Securing input

We face an equivalent problem for input from the user to a
presumably secure app/service: all input is currently handled
by the main OS because of its exclusive hold on the single
touch screen. Secure input needs a way for the user to a) be
sure that input only goes to secure components (e.g. trusted
virtual guest domains) and b) to initiate a switch between
different components (virtual guests) that is not subject to
an app-in-the-middle attack.

While this can also be achieved with additional hardware
such as dedicated pinpads hard-wired to the SE, practical
experience strongly suggests that users will not want their
mobile devices to become bigger “just for security pur-
poses”. A more practical approach is therefore to first secure
output and then rely on the intuitive end-user assumption that
those components that produce the current output will also
receive the input. This solves the problem concerning the
user interaction aspect by giving (secure) feedback to users
which component (virtual guest) they are interacting with.
However, the technical implementation still remains open
for current smart phone platforms, because the touch screen
driver will typically reside in the main OS and not in the
limited hypervisor code. Our current approach is to move
touch screen event handling into the hypervisor code and
forward those input events only to the virtual guest that is
currently controlling screen output. Implementation details
and their implications are subject to future research.

VI. CONCLUSIONS AND OUTLOOK

After systematically identifying threats to user data on
current mobile devices, we have analyzed the landscape of
technical approaches to addressing them and the significant
differences to traditional security measures from a security
point of view. To this end, we found the need for addi-
tional technical components, namely virtualization, further
integration of existing embedded smart cards with secure
boot verification, and secure user interface components. The
biggest open issue is how to design the user interaction in



terms of data input and output in such a way that users can
reliably and unobtrusively be aware of which application part
they are communicating with. This is currently unsolved and
remains the most important research question to advance the
area of secure mobile devices.

In a cooperation with other research groups, we are cur-
rently preparing an extensive user study concerning the gran-
ularity of separating different parts of mobile platforms/apps
and on visualization and input concepts. Results will be
published as future work and we expect them to inform
our architecture decisions towards addressing the question
of intuitive secure user interaction.
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