
Bridging the Gap with P2P Patterns

Alois Ferscha1, Manfred Hechinger1, Rene Mayrhofer1

Ekaterina Chtcherbina2, Marquart Franz2, Marcos dos Santos Rocha2, and
Andreas Zeidler2

1 Insitut für Pervasive Computing, Johannes Kepler Universität Linz, Altenberger
Straße 69, A-4040 Linz, Austria {ferscha,manfred,rene}@soft.uni-linz.ac.at

2 Corporate Technology CT SE 2, Siemens AG, Otto-Hahn-Ring 6, 81739 Munich,
Germany {marcos.rocha, a.zeidler, ekaterina.chtcherbina,

marquart.franz}@siemens.com

Abstract The design principles of pervasive computing software ar-
chitectures are widely driven by the need for opportunistic interaction
among distributed, mobile and heterogeneous entities in the absence of
global knowledge and naming conventions. Peer-to-Peer (P2P) frame-
works have evolved, abstracting the access to shared, while distributed
information. To bridge the architectural gap between P2P applications
and P2P frameworks we propose patterns as an organizational schema
for P2P based software systems. Our Peer-it hardware platform is used
to demonstrate an application in the domain of flexible manufacturing
systems.

Keywords: Peer-to-peer computing, pervasive computing, application pat-
terns, Mobile computing, Ad-hoc interaction

1 Introduction

Peer-to-Peer systems have recently gained more and more interest for various
applications scenarios. Unlike in the area of object oriented software design, pat-
terns for the development of peer-to-peer applications are not generally known.
The motivation for developing patterns for peer-to-peer systems is twofold: First,
P2P systems, and especially ad-hoc peer-to peer systems, are complex due to
mobility of the interconnected nodes, the lack of dedicated master nodes and
in general due to the involvement of a potentially large number of nodes. The
mobility of peers in space, connectivity and mode of operation creates a highly
dynamic system with manifold issues like transient connectivity, network splits
with disjoint groups, resending of messages, dynamic loop detection, transient
life- and dead-locks, etc. Other reasons for the complexity are a large number of
nodes that should be coordinated and the lack of dedicated master or synchro-
nization nodes in P2P systems. Issues arising from these complexities have been
studied extensively in the area of coordination models and languages. Secondly,
developing real-world P2P applications is laborious due to the combination of
often heterogeneous peers and the need for P2P concepts to span multiple layers



2

of abstraction (cf. ISO/OSI model). Many current P2P applications are devel-
oped from scratch and are thus concerned with basic communication layers as
well as the application logic itself.

P2P patterns can address both factors by, on the one hand, assisting the ap-
plication designer to cope with the inherent complexity and therefore decreasing
the probability of errors, and, on the other hand, providing ready-to-use parts
of P2P systems so that application designers can concentrate on the application
logic and are relieved of the issues in lower layers. To provide a pool of typi-
cal P2P applications flows in mobile ad-hoc networks using an appropriate P2P
system for discovery and communication, we present several P2P application
patterns within this document. These application patterns are situated between
P2P infrastructures / frameworks and applications themselves, as depicted in
Figure 1. Typically, P2P infrastructures implement the discovery of peers as

Figure 1. Scope of P2P Patterns

well as resources (for example music files) and the communication with peers as
there core functionality. Numerous P2P infrastructures and frameworks have al-
ready been developed, therefore P2P applications can already be built on top of
various existing infrastructures, whichever is situated best for the corresponding
application. Examples for such frameworks are JXTA [1], NKF [2], or more static
approaches like Freenet [3]. Applications which are built on top of P2P infras-
tructures typically contain the handling of sensors and actuators, user interfaces
and application logic. Various applications are currently available, ranging from
file sharing (e.g. Gnutella [4] or BitTorrent [5]) and folder synchronization (e.g.
Novell iFolder [6]) to voice-over-IP systems (e.g. Skype [7]) or gaming platforms
(e.g. DirectPlay) and many more.

For our work, we use the P2P Coordination Framework [8] as the basis. It
provides a comprehensive infrastructure for P2P applications in fully decentral-
ized mobile ad-hoc scenarios and implements discovery of peers, communication
between peers independently of the used communication technology, limiting
communication to spatial proximity using a spatial proximity sensor, transpar-
ent interaction with resource-less objects [9], transparent invocation of remote
services [10] and distributed coordination mechanism utilizing a context sensi-
tive profile description language [11]. Therefore, the framework is a basis for P2P



3

applications in decentralized and mobile ad-hoc scenarios; it does however not
directly implement application logic for such domains. For the remainder of this
paper, we define mobile ad-hoc P2P systems as a set of partially interconnected
nodes which shall be coordinated to solve a given problem. These nodes are
mobile in space, connectivity and mode of operation and interact without prior
knowledge of each other upon contact defined by the communication media. P2P
patterns as introduced in this document solve recurring coordination problems
of mobile ad-hoc P2P systems.

2 Related Work

The definition of patterns, as used in software development today, origins from
Alexander et al. [12] and describes patterns as follows: “Each pattern describes a
problem with occurs over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice”.

In [13], Gamma et al. explain the important distinction between frameworks
and patterns such that patterns are 1) more abstract 2) smaller architectural
elements and 3) less specialized than frameworks. The separation towards al-
gorithms is provided by [14] such that algorithms are more fine-grained than
patterns. [15] categorizes patterns by its abstraction level into “architectural
patterns”, “design patterns” and “idioms”, where architectural patterns ”... ex-
press a fundamental organization schema for software systems ...”. Another im-
portant category are “interaction patterns” as, for instance, presented by IBMs
patterns for e-business application interaction [16]. Similar to these, we also
address application-level patterns for rapidly building P2P applications.

The most similar work to P2P patterns for Applications can be found in the
JXTA services layer, which is built on top of the JXTA core layer and according
to [1], deals with “higher-level” concepts such as indexing, searching, and file-
sharing. [...] These services [...] are useful by themselves but are also commonly
included as components in an overall P2P system. These services are used to
build JXTA applications, similar to the patterns proposed within this paper. The
general idea and concept of several projects in the JXTA service layer might also
be good candidates for patterns. Examples projects are “dO”, that implements
distributed (replicated) objects using JXTA, “jxtaspaces”, which aims to provide
a distributed shared memory service for JXTA, “meteor”, implementing a P2P
distributed hash-table, “search”, which is a distributed search service on top of
JXTA and “jngi”, which is a Framework for job distribution among several peers.
These services are however specific implementations for Project JXTA and can
not be immediately applied for other P2P infrastructures.

3 P2P Patterns

Within this Chapter, we present several example patterns. We intentionally tried
to model P2P patterns resembling well-known OO patterns for ease-of-use.



4

3.1 The Checklisting Pattern

The Checklisting pattern provides means for maintaining a (usually ordered)
list of services (usually running on different peers) an application has to interact
with, considering arbitrary constraints. This problem typically arises in mobile
scenarios where a task is accomplished by the collaboration of multiple peers.

To solve the tasks sketched above, the Checklisting pattern proposes the
following entities, which are illustrated in Figure 2.

– Check-Items are the individual “items” that must be “checked”. Each Check-
Item has an associated action, which has to be accomplished by the Checker-
Peer in order to get the Check-Item checked.

– Checklists contain a (usually ordered) list of Check-Items and can be inter-
preted as a project network diagram. The individual items are connected via
edges which express a causal dependency between Check-Items (for exam-
ple that a Check-Item A must be accomplished before another Check-Item
B). Each Check-Item additionally may have arbitrary associated constraints
which are considered while processing the Checklist.

– The Checklist-Service is responsible for managing Checklists and for the
interaction with other peers (in particular with Checker-Peers) in order to
get the Check-Items of a Checklist accomplished.

– Checker-Peers provide means for performing arbitrary actions (for example
a processing step). They are used to tick off Check-Items after the corre-
sponding actions have been executed.

Figure 2. Checklisting pattern entities

For modeling the interaction requirements of an entity, Checklists are used.
Checklists are similar to techniques for network analysis. The actual features
of the Checklist regarding the interconnection of nodes (for example alterna-
tives) and the use of constraints (various constraint types) may vary. Each node,



5

Figure 3. An example checklist

as well as each edge, may have several constraints assigned (cf. Figure 3). A
violated constraint is reported automatically by the Checklist-Service in order
to allow the application to incorporate according handling.

An application typically gets the items of a Checklist accomplished by exe-
cuting the following operations:

1. Create a Checklist by subsequently adding Check-Items.
2. Get the first/next Check-Item that must be checked
3. Wait until a Checker-Peer capable of checking the item is available
4. Start checking the item, which usually means that the action of the Check-

Item is executed on the Checker-Peer.
5. If any further unchecked Check-Item is available, go to step two.

Figure 4. Example checklisting scenario



6

(a) Transport peer (b) Processing
peer

(c) Monitoring
peer

(d) Artifact

Figure 5. Basic building blocks of the flexible manufacturing scenario

Example Scenario The example scenario illustrated in Figure 4 heavily re-
lies on the Checklisting pattern. It implements a flexible manufacturing system
(FMS ), where the processed items are aware about themselves and autonomously
determine the next processing machine they have to visit. The depicted flexi-
ble manufacturing cell consists of multiple processing machines (A, B, C), a
transport vehicle and different processing goods, which we call artifacts. Fig-
ure 5 shows these four basic building blocks in their current implementation for
our research lab: the transport peer is an autonomous, self-moving vehicle that
carries artifacts from/to processing peers; the processing peers are robots that
offer different services to the FMS and execute processing steps on artifacts; the
monitoring peers is an arbitrary tablet PC or notebook and serves as a GUI for
the operator to monitor and control the whole FMS; artifacts are the workpieces
which are moved by the transport peer and manipulated by the processing peers,
i.e. which are handled by the manufacturing process.

Each artifact maintains a checklist containing various processing steps that
must be accomplished by “visiting” different processing machines. Artifacts uti-
lize the depicted transport system to get transported to those processing ma-
chines providing the processing service(s) stored in the checklist. After all check-
items of the checklist are successfully checked, the processing good is transported
to its final destination.

Figure 7 depicts a flow of an artifact in a manufacturing cell. The artifact
maintains the checklist depicted in Figure 6. Processing is started on machine

Figure 6. Scenario checklist

A, then requires machine B and C (or C and then B). If both items (B and C)



7

are checked, the processing machines A, then C and finally again B are required.

Figure 7. Checklist Processing in a FMS Scenario

3.2 A General P2P Pattern Prospect

Functional and Topological patterns We have identified two main categories
of P2P patterns, “Functional” and “Topological” patterns. Functional patterns
directly assist applications accomplishing their respective tasks by providing
implementations for specific recurring problems regarding the interaction among
two or more peers. Functional patterns usually require that they are implemented
on each affected peer. The Checklisting Pattern proposed in the previous chapter
is a typical functional pattern.

Topological patterns in contrast, usually affect the “network topology” of the
involved peers or adapt the architecture of the distributed system consisting out
of several peers. Topological patterns for example create virtual nodes, aggregate
nodes to “supernodes”, split physical nodes to multiple virtual nodes or create
partitions of nodes.

The rest of this chapter briefly motivates other possible pattern in the area
of P2P architectures.

Ad-hoc P2P Introspection An Ad-hoc Introspection Pattern could provide
means for the recurring problem of introspecting data on remote peers in mobile
ad-hoc networks. Such a pattern could ease the query of approved status vari-
ables of a peer. A manfucaturing scenario as sketched in the previous chapter
could include maintenance workers which survey the progress and status of the
manufacturing cell. The Ad-hoc P2P Introspection pattern is a typical functional
pattern.



8

Intermediary Peer Connectivity and reachability is an important topic in P2P
sytems. If two peers use different communication technologies (e.g. Bluetooth,
WLAN) or a peer is not reachable due to its limited communication range, an
Intermediary Peer, providing transparent access to resources of one ore more
other peers, could provide means for improved connectivity. The Intermediary
Peer pattern is a topological pattern.

P2P Synchronization The P2P Synchronization pattern is a functional P2P
pattern which can be used for the synchronization of arbitrary data between
multiple peers. It provides a solution sketch for the problem of having a consistent
view of multiple data objects in P2P environments.

P2P Chain of Responsability This functional P2P pattern candiate repre-
sents a solution for the delivery of “events” in P2P networks without the need
for specific device addressing, similar to content-based messaging algorithms. We
propose to use event descriptions and interest descriptions to deliver events to
those peer(s) with the most matching interest description. The pattern could
be used for sensor networks to provide a base for event notification without the
need for preliminary subscription at “sensor peers”.

Visitor We propose the Visitor pattern for the transfer and execution of arbi-
trary active code in P2P ad-hoc networks. In such a pattern, an active component
could decide on its own to which peer it whishes to “migrate”. Since executing
unknown active code raises serious security problems, this pattern should only
provide restricted access to the resources of the peer. We propose that the process
of migration from one peer to another includes the following tasks: 1) Receiving
the active component 2) Installing the component and preparing it for execution
3) Starting of the component within a secure environment 4) Packing the com-
ponent and results to a transferable unit and finally 5) Transferring the unit to
another peer as requested by the active component.

4 Conclusion

Software architectures for the spontaneous interaction and interoperation of mo-
bile, ad-hoc, context aware and autonomous entities are increasingly based on
low level of abstraction P2P frameworks, thus challenging the P2P application
development process. In this work we have motivated why it is important to
address the architectural gap among P2P applications and the underlying P2P
frameworks and infrastructures in a systematic and structured way. We have
proposed a design patterns based approach, and have discussed and developed
P2P design patterns. Besides considerably easing the development process, the
pattern oriented approach gains from the reduced efforts for solving coordina-
tion problems and improved application stability due to the reuse of proven P2P
code.



9

References

1. Gong, L.: Project JXTA: A technology overview. Technical report, Sun Inc. (2001)
2. Roth, J.: A communication middleware for mobile and ad-hoc scenarios. In:

Proceedings of the International Conference on Internet Computing (IC’02). (2002)
77–84

3. Clarke, I., Miller, S., Hong, T., Sandberg, O., B.Wiley: Protecting free expression
online with Freenet. IEEE Internet Computing 6 (2002) 40–49

4. Bordignon, F., Tolosa, G.: Gnutella: Distributed system for information storage
abd searching, model description. IT-Journal of Internet Technology 2 (2001)

5. Cohen, B.: Incentives to build robustness in BitTorrent (2003)
6. Novell: Novell iFolder. Technical white paper, Novell Inc. (2002)
7. Skype: The Skype internet telephony homepage (2004) http://www.skype.org.
8. Ferscha, A., Hechinger, M., Mayrhofer, R.: The peer-to-peer coordination frame-

work - architecture reference. Technical report, Institut für Pervasive Computing,
Johannes Kepler Universität Linz (2004)

9. Mayrhofer, R., Ortner, F., Ferscha, A., Hechinger, M.: Securing passive objects in
mobile ad-hoc peer-to-peer networks. In Focardi, R., Zavattaro, G., eds.: Electronic
Notes in Theoretical Computer Science. Volume 85.3., Elsevier Science (2003)

10. Ferscha, A., Hechinger, M., Mayrhofer, R., Oberhauser, R.: A light-weight compo-
nent model for peer-to-peer applications. In: Proceedings of the 2nd International
Workshop on Mobile Distributed Computing (MDC04), IEEE Computer Society
Press (2004) 520–527

11. Armbruckner, M.: Multi-User Interaktion in ad-hoc Netzen. Master’s thesis, Jo-
hannes Kepler Univseritaet Linz, Austria (2002)

12. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl, I., Angel, S.: A
Pattern Language. Towns,Buildings,Construction. Oxford University Press (1977)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley Publishing (1995)

14. Appleton, B.: Patterns and software: Essential concepts and terminology (2000)
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

15. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects. Volume 2. John
Wiley and Sons (2000)

16. IBM: IBM patterns for e-business (2004) http://www-
106.ibm.com/developerworks/patterns/index.html.


