
Private Notes: Encrypted XML Notes Synchronization and
Sharing with Untrusted Web Services

Paul Klingelhuber
University of Applied Sciences Upper Austria

paul.klingelhuber
@students.fh-hagenberg.at

Rene Mayrhofer
University of Applied Sciences Upper Austria

rene.mayrhofer@fh-hagenberg.at

ABSTRACT
Personal notes, even when shared with others, often contain
highly sensitive information. From a security and privacy
point of view, currently available (web) services that up-
load such personal notes to potentially untrusted third party
servers are therefore problematic and we suggest to encrypt
all notes before transferring them from the user’s personal
device. However, synchronization and sharing of encrypted
data is a non-trivial issue, because conflict resolution and
merging algorithms need to be applied to plain-text content.
With Private Notes, we propose an architecture for client-
side encryption, merge, and conflict handling of personal
notes stored in XML format. We adopt the OpenPGP stan-
dard for symmetric and asymmetric encryption and Web-
DAV for synchronizing and sharing notes on arbitrary web
servers. Specific implementations in the form of a plug-in
for the Tomboy desktop note taking application and the An-
droid and iOS mobile platforms demonstrate the ease of use
of encrypted notes sharing.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications

Keywords
note taking applications, XML synchronization, client-based
encryption

1. INTRODUCTION
Management of personal or public notes is one of the main

components of so-called Personal Information Management
(PIM), and was one of the early applications of mobile de-
vices. Use cases for note keeping are diverse and include
the typical shopping and to-do lists, meeting protocols, or
“notes to self”. Mimicking the way people take structured
or unstructured notes during their daily life, mobile devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam
Copyright 2011 ACM 978-1-4503-0784-0/11/12 ...$10.00.

should support quick creation, modification, and retrieval of
arbitrarily formatted notes with little overhead.

Mobile phones are attractive devices for note taking be-
cause they are usually kept with the user and are there-
fore (mostly) always available. On the other hand, enter-
ing longer texts is awkward and slow on small keyboards
or touch screens. Therefore, one important feature of note
management applications is synchronization of specific notes
or sets of notes between multiple devices. With notes syn-
chronization, users may create or modify notes on devices
where and when it is most appropriate (e.g. using a laptop
during a meeting or a tablet at home) and retrieve them in-
dependently (e.g. with their mobile phone). Consequently,
various commercial applications already address this issue
of note management across multiple devices, e.g. Evernote1,
Remember the Milk2, and Springpad3 as web services with
mobile phone clients.

One critical problem with these services is that all notes
are stored in plain text on the central web service, and users
therefore have to trust the service operators to keep their
notes secure from other users (against the plethora of web
service attack techniques currently available) and not to ex-
ploit this data themselves or intentionally share them with
others. Considering the highly personal nature of many of
the notes users keep, there is a significant risk involved in
sending them to third party services. With Private Notes,
we aim to solve this issue by encrypting and decrypting notes
on end-user devices (such as mobile phones and laptops) and
only storing fully encrypted versions of personal notes on
third-party services. Therefore, these services, typically re-
alized as web services, only need to be trusted to provide
storage with reasonable availability, but do not need to be
trusted to guarantee security and privacy.

However, there are two main issues that need to be ad-
dressed for client-side encrypted notes synchronization:

a) Synchronization of arbitrary binary files – including the
encrypted versions of textual notes – is a non-trivial is-
sue. With disconnected mode of operation and client-
side caching, which is the standard use case for most mo-
bile applications, binary files may be changed indepen-
dently on multiple devices between two full synchroniza-
tion rounds, and may therefore diverge from each other.
Automatic merging of arbitrary binary formats cannot
be guaranteed and would therefore be left to the user

1http://www.evernote.com
2http://www.rememberthemilk.com
3http://springpadit.com

http://www.evernote.com
http://www.rememberthemilk.com
http://springpadit.com

to solve (e.g. the Dropbox4 file synchronization service
simply creates copies of files when such conflicts occur).

b) Sharing encrypted content requires all users (respectively
their devices) to have access to the cryptographic key ma-
terial required to decrypt the data. This means to either
use a shared password for deriving the same secret key
(which is problematic in case access should be revoked
for some users) or to use session keys which are in turn
encrypted for each of the authorized users.

In the Private Notes project, we solve the issue of syn-
chronization by not applying any conflict handling to the
encrypted binary data, but including text merge capabilities
for the XML formatted notes within the client applications.
Updating the encrypted versions of notes on the (untrusted)
web service is the sole discretion of clients, after handling
conflicts in the plain-text version. Sharing encrypted con-
text is solved by encrypting the required session key to de-
crypt the actual note with each authorized user’s public key
based on the OpenPGP standard, which allows interoper-
ability with well-known cryptographic tools and potentially
(in future versions) with email clients.

The present paper makes three contributions:

• We present an architecture for client-based encryption
and synchronization of notes with untrusted, storage-
only web services. All necessary methods for en- and
decryption and merge/conflict handling are included in
client applications for privacy reasons and to support
a wide range of web services for cloud based storage
of notes. To support a wide range of client devices
and applications, we define three different encryption
schemes and discuss their respective advantages and
disadvantages.

• We introduce a user-friendly sharing mechanism that
relies on the OpenPGP standard for handling multi-
ple (private) decryption keys and an URL scheme for
flexible distribution of “links” to shared notes.

• We describe specific implementations for desktop oper-
ating systems (Windows, Linux, MacOS/X) based on
a Tomboy5 plug-in, for Android by extending the pre-
viously incomplete Tomdroid application, and a new
implementation for iOS (e.g. for iPhone). An initial
implementation for the storage-only notes sharing web
service is based on the WebDAV standard and minor
server-side extensions for creating note specific URLs
derived from GUIDs (globally unique identifiers).

2. RELATED WORK
In the field of data synchronization, there is a breadth

of solutions available, because of the greatly different ar-
eas of application. When narrowed down to PIM data syn-
chronization, there are still several established technologies
such as ActiveSync [6] or SyncML [18]. While ActiveSync
is a widely used protocol especially for business use with
Microsoft Exchange servers or newer alternative implemen-
tations such as Zarafa Z-Push, SyncML is an open alter-
native that is also widely adopted and has been in use on
mobile devices (feature phones) before smartphones became

4http://www.dropbox.com
5http://projects.gnome.org/tomboy/

popular. Both of these protocols support secure transport
via HTTPS, which only secures the transport from the syn-
chronizing client to the server. The server therefore has
full access to the data, which is also necessary because in
both protocols the server plays a central role in the syn-
chronization process, e.g. in handling conflicts. With both
protocols, capabilities are mostly defined by client devices.
Furthermore, both protocols define data types for elements
that can be synchronized (like messages, contacts and other
PIM related information) and serialization for these types
which are mostly XML based [6, 8].

ActiveSync and SyncML use XML as a serialization for-
mat, and therefore the servers can perform synchronization
on the raw data. In contrast, there are also systems that
allow distributed handling of XML structures such as the
middleware XMIDDLE [23] which aims at making it easy for
multiple clients to access and change XML data while ab-
stracting possibly unreliable network connections. Another
example is the work on cooperative access to XML docu-
ments via lock based protocols by Helmer et al. [17], which
provides locks on sub-trees of XML documents which can be
used to coordinate write access. In contrast to ActiveSync
and SyncML, these systems aim more at simultaneous co-
operation on documents. When thinking about notes as the
digital counterpart of sticky notes a simultaneous coopera-
tion on editing them seems less likely, however when thought
of as sketch-pads, simultaneous editing would be a reason-
able use case.

However, all the mentioned protocols and approaches lack
the possibility to be used with an untrusted server, and
therefore violate one of our design goals. With untrusted
(web) services, all en- and decryption needs to be done
on the client side. One possible solution is the OpenPGP
message format [10] which provides both encryption with
a shared password and with public/private key cryptogra-
phy for multi-party notes sharing. As mentioned above,
OpenPGP does not support synchronization of its (binary)
encrypted output. When the server is not fully trusted,
synchronization needs to be done on the client, identifying
conflicts and resolving them on the decrypted (plain text)
format, e.g. with state-based merging [19].

One closely related approach with more emphasis on (dis-
tributed) versioning is to use Git with OpenSSL for en-
/decrypting the backend repository files [25]. This setup
may work in a mixed platform environment with implemen-
tations like JGit6 (the Java Git implementation), but has
not yet been demonstrated in practice. Although it imposes
more work on the clients, it provides full versioning capabil-
ities, which our Private Notes project currently lacks. An
additional open issue is the integration of public key cryp-
tography, because the setup described in Shang’s paper [25]
requires a deterministic encryption to not disturb the oper-
ation of the underlying version control system.

3. NOTE ENCRYPTION
In this section, we describe a simple format for symmet-

ric encryption of files as an alternative to the more complex
OpenPGP standard. It was designed with a focus on small
files such as notes, to be usable on devices with significantly
limited resources, and to support client-side synchroniza-
tion. Synchronization is based on a timestamp encoded in

6http://eclipse.org/jgit/

http://www.dropbox.com
http://projects.gnome.org/tomboy/
http://eclipse.org/jgit/

Figure 1: Top Level of the encryption scheme.

Figure 2: Contents of encrypted part.

the header of the encrypted data, which is used to speed
up synchronization when only files in a certain time interval
need to be considered. Validating the timestamp based on
the embedded hash is only possible after decryption, but the
order for processing different notes can be determined be-
forehand, therefore speeding up the whole process. Further-
more, the filename is part of the verification hash because
in the Tomboy notes file format, the filename identifies the
individual notes, which consequently needs to be validated
as well.

The used cryptographic primitives are: the SHA-256 hash
function (for all hashes) and the AES encryption algorithm
in CBC mode. An encrypted file consists of a version infor-
mation, followed by the timestamp, the key hash, the key
salt, and finally the encrypted data part. This is depicted in
figure 1. The encrypted data contains a message authentica-
tion code (MAC), the length of the plain text, the plain text
and padding to multiples of the AES block size (see figure 2).
The MAC is a SHA hash of the version, the timestamp, the
filename, and the plain text including padding. It is used
to protect the data against unnoticed altering of the data
(either malicious or accidental). This does not mean that
we can recover the original data if it has been changed, but
detect it. The input data for the hash can be seen in fig-
ure 3. This scheme is deliberately kept very simple on the
design principle by Ferguson and Schneider “Complexity is
the worst enemy of security.” [15].

Our scheme takes a password as input with UTF8 encod-
ing and uses it as a symmetric key for the encryption. As
keys for the actual encryption we use the result of hashing
the password bytes with the used salt once. The data that
is stored in the file is the result of repeating this operation
again using the same salt. We use a salt length of 256 bits as
suggested by [15]. We do not use stretching, which is the re-
peated application of the hashing algorithm before using the
result after a fixed number of computations as the key, be-
cause the scheme should be easily adoptable on devices with
limited resources. It is questionable if there are parameter
combinations for stretching that impact the performance of
brute-force attacks on state-of-the-art machines while not
diminishing performance on limited mobile devices to the
point of decreasing usability.

Figure 3: Data that is used as an input for the mod-
ification detection hash.

Comparison to OpenPGP
Compared to the OpenPGP format, our simplified scheme is
similar in some respects such as support for salted keys, but
differs in the usage (OpenPGP uses only 64 bits of salt). The
OpenPGP structure is composed of so-called packets which
are put together to form an OpenPGP message. Because of
this structure, there are many different types of information
that can be contained in such a message, such as a signa-
ture packet or a symmetrically encrypted data packet [10].
Undoubtedly the OpenPGP format offers greater versatil-
ity, but therefore requires significantly more effort to sup-
port even if only the required features are implemented for
compliance. On platforms without OpenPGP libraries (such
as the BouncyCastle [3] implementation in Java), this im-
plementation effort may be prohibitive. We chose to use a
straightforward and simpler, albeit less flexible design as an
alternative for limited mobile platforms. Its implementation
only needs to support SHA-256 and AES with a blocksize of
128 bits and a 256 bit key.

In terms of execution speed, we tested a C# implementa-
tion of the OpenPGP format with the BouncyCastle library
and a C# version of our scheme on a file of 455 bytes. Our
implementation took 141 ms to run whereas the BouncyCas-
tle implementation took 525 ms. This difference in execution
speed is partly probably due to the fact that BouncyCastle
uses its own AES implementation and ships with many other
capabilities built in, however it shows that our scheme can
be easily implemented and perform well even without opti-
mizing the code for execution speed.

A major advantage of OpenPGP over our scheme is that it
supports public key cryptography, which is especially useful
when implementing our proposed notes sharing functionality
described in more detail below.

Interchangeability
Since the structure of our scheme is not defined in terms of
smaller units (like the OpenPGP packets) and the header
format is different as well, these two schemes are obviously
not directly interchangeable. However, it would be possible
to easily handle data in both formats. Because our scheme is
only specified with one version number, the first bit always
has the value 0, OpenPGP messages on the other hand al-
ways start with a 1 bit (except ASCII-armored files, which
could however be identified by their textual header). With
this distinction, the appropriate scheme could be automati-
cally selected for decrypting notes.

3.1 Encryption with Shared Passwords
Shared passwords are the most familiar encryption mech-

anism for end-users, because they are comparable to the
passwords used every day to log into their computers, e-
mail accounts, or PIN codes for cash machines to withdraw
money. In the context of this paper, shared does not nec-
essarily mean that these passwords are shared with other
people, but in the sense that it is shared between users and
the party they interact with when using the key — such as
multiple personal devices that synchronize the user’s notes.

Shared keys can have diverse characteristics; as stated
above, they can be simple PINs or strong pass-phrases. Typ-
ically, these types of passwords are not directly suitable for
mass data encryption, as encryption keys need to have a
defined length (such as 128 bits) and need to be distributed
uniformly. The transformation from an arbitrary password

to such a key is described by so-called string-to-key param-
eters. This can be for example a specific hashing algorithm
and values that describe the number of applications and a
salt [15].

Shared passwords are practical when the encrypted data
only needs to be accessible by one user. They become a prob-
lem when a user wants to share access with another user to a
certain resource. Even if the user chooses a new password for
this purpose, it becomes more tedious and users may there-
fore tend to choose weaker passwords or make other mis-
takes. As surveys and statistical analysis frequently show,
people are typically not very good at choosing good pass-
words [5, 2, 21].

We decided to use shared passwords for the encryption
of the notes that are synchronized between the devices of
one user. Depending on the device it is important to give
the user control about the handling of the password. On
a smartphone for example, a user might want to only tem-
porarily cache the password, if they are afraid that the de-
vice might get lost or stolen.

Both the simplified encryption scheme described in sec-
tion 3 and the standard OpenPGP symmetric encryption
scheme are suitable for this use case. Our application de-
signs described below allow for easy exchange with other
encryption formats. In fact, there is already a module for
encryption via GPG and it would be trivial to make it con-
figurable by the user which one to use. When using GPG, we
paid attention to set the appropriate options that promise
robust security, such as using AES and forcing the use of an
MAC to prevent undetected modification of encrypted files.

3.2 Encryption with Asymmetric Keys
Asymmetric keys, also called public- and private-key pairs,

are a widely accepted alternative when dealing with multi-
ple users who want to share information with each other.
By encrypting the message with the public key of the re-
ceiver, only they can decrypt it with their private key. The
OpenPGP format for example allows the encryption of a
message with multiple receivers. This is achieved by creat-
ing a new intermediate (random) key, also called a session
key, which is used to encrypt the actual message. This key is
then encrypted with the public key of every recipient. This
has several advantages, one being that the amount of data
that needs to be transferred only increases minimally with
each user. A second reason is that the session key will be
different each time and therefore the amount of cypher text
from the same key an attacker has to do analysis on stays
small and makes attacks more difficult [10].

The collection of public keys a user has is referred to as
their public keyring. The private keyring of a user contains
their personal keys. When a user receives a public key from
another person they know, they should contact that person
and verify this key by comparing the fingerprint over an
out-of-band channel (such as a phone call when the voice of
the other party is known). Key trust is the way to handle
bigger sets of keys. This allows users to mark somebody
they know (respectively their keys) as trusted, which can
mean that they will trust every key that the other person
trusts, depending on the trust-level [9].

One might argue that when dealing with multiple devices
the handling of the key pairs is again a problem. This is
only partly true because the public keys don’t have to be
kept secret (as their name suggests). Concerning the private

keys it is indeed not trivial to distribute them securely to
all devices that need it. Because the private keys are a very
sensitive part, they are typically protected by a passphrase
that is only known to the key owner [9] and is entered on
every start of the respective application. These applications
typically cache them for a short time, so that the user can
execute several operations consecutively without having to
enter it over and over again. However, after this time the
passphrase is discarded from memory again and will be re-
requested if necessary.

When looking at scenarios with multiple recipients, where
new messages are encrypted to everybody from the group
there might still be the problem that one of the participants
does not know all the others and might not trust the one
that created the initial message enough to accept all relevant
public keys. This is a difficult situation in which one would
have to check directly with the others if their public keys
are correct. This however does not make much sense if one
really does not know the other person beforehand. In this
case one can only refuse to send messages to them or accept
their keys for the sake of being able to share messages with
the whole group.

To summarize, we suggest to use our simple encryption
scheme only on mobile devices with significant resource lim-
itations and to use the OpenPGP standard, either with sym-
metric encryption for personal notes or with asymmetric key
handling for shared notes, whenever the devices are suffi-
ciently capable.

4. NOTE SYNCHRONIZATION
Synchronization of notes between devices can be done in

a variety of options. On the one hand a distinction can
be made between synchronization that always transfers the
whole note as an update versus only transferring the deltas.
On the other hand the transport and connection topology
between the synchronizing devices is a key differentiation
factor. There can be ether a client-server setup or a peer-to-
peer (P2P) topology (or also hybrid forms). In the case of a
client-server infrastructure there is again ether the possibil-
ity to have a server that actively assists with the synchro-
nization process or to have a passive server that is basically
only a global storage node. Examples for active servers are
amongst others ActiveSync and SyncML as described in sec-
tion 2. Servers that only offer storage can be implemented
via public standards such as NFS [26] or WebDAV [14], or
it can also be services such as Dropbox7 or Ubuntu One8.

As discussed before, the synchronization methods with ac-
tive servers typically provide security only for the communi-
cation channel — the server, its operators, and the country it
is hosted in need to be implicitly trusted. Regarding the P2P
methods, there is for example a system that extends and
adapts the CVS to allow peer-to-peer synchronization [22].
This one also does not tackle encryption as well. A similar
approach is the already mentioned Git with OpenSSL [25]
which brings encryption of the files contained in the VCS.
This is roughly the direction that we also took, but without
the full versioning functionality. Additionally, we only use
the client server based approach because there are fewer op-
tions that need to be covered compared to peer-to-peer sys-
tems, like multiple interwoven version trees. Another reason

7http://www.dropbox.com
8https://one.ubuntu.com/

http://www.dropbox.com
https://one.ubuntu.com/

is that in a mixed environment of PCs and mobile devices
it is very likely that not all of them are always reachable at
the same time, therefore it is the preferable solution to have
a server that is always available.

4.1 Private Notes synchronization
Our basic strategy is to use a globally accessible storage

server, in our case WebDAV because it is a standardized file-
access protocol that was built for the web and is currently
widely used (for example by Microsoft SkyDrive9 or Apples
iCloud). All notes are encrypted before transfer to the server
with a shared key of the user, because these notes are only
for their private use and therefore a shared key is sufficient
and also applicable for users who don not have their own
key pairs.

Because a file based storage service is used, we adopt the
approach implemented by the Tomboy file based synchro-
nization, which means that the server directory used for
notes synchronization includes a manifest file that holds the
latest version number and a list of all notes with their respec-
tive version numbers. Every note has an associated version
that is incremented with each change when synchronized to
the server. In other words, this count can locally only in-
crease by 1 between two synchronization transactions. Ver-
sions are kept on a per-note basis and the global version is
simply the maximum across all values.

When multiple clients (say A and B) access the same
server, it can obviously happen that version numbers change
by more than 1 on the server between two synchronization
transaction of client B because client A has made multiple
changes and synchronized them individually. This is not
necessarily a problem, only when changes are made to the
same file a conflict arises. This is similar to version con-
trol systems like CVS, except that these systems typically
attempt automatic merging and only report these states as
conflicts if merging fails [11].

The conflict handling in Tomboy normally does not do any
automatic merging but simply allows the user to prefer one
of the versions or save both versions so he can resolve them
later. On the mobile client Tomdroid, we chose to implement
a automatic merging for conflicts, because on smartphones
it is difficult for a user to compare two notes and make a
manual merge. The automatic merge still contains some
annotations which show the user where changes happened
so they can quickly fix the content without having to look
at two different notes.

In our case, all files that are stored on the WebDAV server
are encrypted, but their names and their content (apart from
being encrypted) are the same. When a client synchronizes
with the storage location, i.e. the WebDAV URL for this
user, it first retrieves the manifest file, verifies the versions
of all notes, and downloads those that have changed. The
client then locally decrypts the files to be able to access their
content. When there are local changes, the manifest file is
updated and the updated notes and the new manifest file
are uploaded to the WebDAV server after being encrypted
again.

This system with file-based synchronization endpoints only
supports one actively synchronizing client at a time. This
can be achieved for example by lock-files, which is widely
used in practice (apache web server, eclipse IDE etc.). With
WebDAV, locking functionality is provided by the protocol

9http://skydrive.live.com/

Figure 4: Notes synchronization scheme.

itself. However, because the specification does not require
compatible implementations to support this feature, it de-
pends on the specific WebDAV server implementation if it
can be used [14].

Figure 4 summarizes the basic process of synchronizing
with a WebDAV server as described above. Setting and re-
setting of locks is not shown, as it is implementation specific
and not important for the synchronization procedure itself.

4.2 Note Sharing
Sharing encrypted notes with other users requires changes

to the applied synchronization scheme. Encryption is only
one part for which a different approach is required. As dis-
cussed before, asymmetric key cryptography with a session
key encrypted with each participant’s public key is the most
straight-forward means for notes sharing. An alternative to
automatic encryption key handling are various group-keying
protocols (e.g. [20]), which are unsuitable for our purpose as
they require online connectivity between all parties. The
last possibility – to let the user choose new pass-phrases for
every share – is not realistic because this would favor poorly
chosen passwords and necessitate a secure channel to trans-
mit the password to every participant before they can take
part in using the shared note.

For Private Notes, we define the following aims for note
sharing:

• It should be easy to mark something as shared.

• For every share, it should be possible to choose differ-
ent partners.

• Sending references/links to shares and adding them at

http://skydrive.live.com/

the other (receiving) party should be as user-friendly
and flexible (in terms of the way of transmitting the
link) as possible.

Encryption of shared notes
Because we rely on the OpenPGP message format, dealing
with multiple recipients is unproblematic, because it is sup-
ported to encrypt a message with multiple public keys [10].
A precondition is that we already have the public keys of
all the parties we want to share with and that they have
ours (cf. section 3.2 about multiple recipients and mutual
acquaintanceship).

In our implementation, when the user wants to share a
note, we present a searchable list of all the keys that are
available to his OpenPGP tool (e.g. the platform gpg bi-
nary). Although the OpenPGP standard already supports
managing lists of public key ids in its messages, the actual
recipients may be hidden when creating the OpenPGP mes-
sage. For future extensibility concerning the applied encryp-
tion format, we therefore explicitly store this list of all key
ids with access to a note. The manifest of a shared note,
which contains the note id and revision number, is extended
by the key ids of all participating parties. An example of
such a shared manifest is shown in listing 1. This manifest
is then stored alongside the shared note at the respective
location as represented e.g. by the WebDAV URL for this
note.

Listing 1: Shared manifest
1 <sync revision="0" server-id="8ca05352-f733-4

ff0-a7c9-bdae0198978e">
2 <note id="9d60b164-e3aa-4382-b783-

ae0d2f9c115d" rev="0" />
3 <shared>
4 <with partner="8D7E 68DD" />
5 <with partner="EF11 D60B" />
6 <with partner="B164 5EE8" />
7 </shared>
8 </sync>

WebDAV storage of shared notes
Another factor is that unlike synchronization, a user might
not want to share all their notes with other people. People
participating in any share must always be prevented from
gaining access to any of the other notes via the same storage
location. Therefore, we define shares on a per-note basis,
where the user can decide for every note if it should be shared
and with whom they want to share it.

To secure all other notes from being accessible via the
shared note, we always create a separate sharing location
on the web service. For our implementation we decided to
automate the process of creating new storage locations for
shares on the server. The “passive” server is involved in this
action insofar as it needs to allocate a new WebDAV account
with an associated URL and username/password combina-
tion for each share. Our demo server uses an apache server
with WebDAV support, a PHP script for invoking this pro-
cess and a shell script for coordinating the account creation.
In our system, a simple script creates a new WebDAV ac-
count with a random name and random credentials. This
means that shared items are no longer synchronized to the
main synchronization location.

Shares are also not restricted to the server which is re-
sponsible for the normal synchronization. This means that

shares could in theory be stored on many servers, or a user
could also use a private server if they think it is better suited
to hold their shared notes. The only point that prevents a
user from doing this currently is that since the creation of
the WebDAV accounts for sharing is automated, the server
is assumed to be our demo server, because no other server
currently runs this script. Of course everybody can deploy
the same (or similar) solution on an arbitrary web service.
To support this in our Tomboy add-in, one would need to
add an option to configure the server or let the user put in
the service URL that should be used for the share. This is
again only needed for the party that creates the share, other
participants would not have to do any extra work.

Distributing share access is handled in Private Notes in
the following way: the client offers an option to create a
share link. This link contains an application specific URI
prefix note://tomboyshare/ followed by a link which con-
tains all information needed to access the share location.
The application specific prefix is included for several reasons.
First of all, it helps users to see that they are not dealing
with a normal link to a website. Secondly, the note:// pre-
fix is already used to trigger certain operations in Tomboy
via the command line and can be registered (depending on
the platform and operating system) for URI handling. If the
platform supports it and the application is correctly regis-
tered, the user is then able to open the link to a shared
note as easily as opening a webpage link. This is supported
by Microsoft Windows via registry entries, Mac OS X via
Launch Services, on Linux depending on the desktop envi-
ronment, and by some mobile device operating systems such
as Android via Intent Filters. Without platform support for
URI prefix handlers, users can manually import the share
link into the Private Notes client by pasting it into a stan-
dard input field.

There is an additional issue to solve for integrating shared
notes: when synchronizing all items (including the shared
ones) as if they came from the same source, it can easily
happen that a shared note has not changed but some of the
private notes have, and therefore the global version number
has increased. If we now copied this global version number
into the share manifest, it would be misleading for other
clients by forcing a re-synchronization without changes to
the note content. Therefore, the shared items should have
their own isolated maximum version number and Private
Notes clients need to be adapted to deal with these multiple
locations and synchronization revisions.

If we look again at figure 4, the changes we need to make
to integrate sharing into this synchronization remain reason-
able. When fetching the manifest, we also have to retrieve
the manifests from all the shares. The shared manifests also
need to be checked for updates. In the context of the dia-
gram, we would consider these updates part of the remote
updates. When fetching or updating (uploading) the notes,
the client then needs to use either the normal sync location
or a share location. In the end, we have to update the nor-
mal synchronization manifest (if there were updates to the
notes that are covered by it) and also all share manifests
of notes that have been updated. Additionally, the selected
encryption format has to be applied to every upload and
download.

Comparison to similar services
When comparing our sharing approach to other storage ser-
vices that allow sharing such as Dropbox, there are several
differences. Dropbox is a closed-source service which has
its own client programs and APIs. We only use WebDAV
for our storage which is a public standard. As explained
above, when a user wants to share something with others a
new WebDAV account gets created. The credentials for this
share are encoded into the share link that they can freely dis-
tribute to all participants. This means that anybody who
can acquire the link gets access to the files stored at this
location. However, only encrypted files reside there, which
is not useful to potential attackers without the (session) key.
If we in contrast look at how Dropbox handles shares, a reg-
istered user can mark a folder as a shared folder and add
other registered users as participants. They will receive an
invitation (an email and it will appear on their account web-
site) and can then join the share. The Dropbox approach
obviously has some advantages, such as that a user can re-
move users later (if you are the initiator of the share) which
are then no longer able to change the contents of the share,
however they still keep a copy of the version of the files just
before being removed from the share [13].

The advantage of our approach is that because the Drop-
box service is a user account centered service where one has
to create an account and use the proprietary clients or use
their API, sharing with anybody who does not use this ser-
vice is not possible. In our architecture, everybody could
run their own share server and there is no need for regis-
tration to access any other share server as long as a correct
share link is distributed.

Furthermore, with a service like Dropbox, the user is at
the mercy of the respective company. Although Dropbox for
example claimed that their content was encrypted somehow
on their servers, this is subject to software errors in their
server infrastructure [12], abuse by administrators with suf-
ficient access level, and law enforcement overrides. Data
stored remotely can only be assumed to remain private if
the server is only entrusted with encrypted data which is
impossible to decrypt on the server side like in our approach.

5. DISCUSSION AND CURRENT LIMITA-
TIONS

The described functionality was implemented as a pro-
totype which includes an add-in for the notes application
Tomboy, an adapted version of the mobile client Tomdroid,
a new mobile client for iOS, and a WebDAV server set-up
including the required scripts for automatic share URL han-
dling. The add-in enables users to declare notes for sharing
and to select partners from a list of public keys. It also au-
tomatically interacts with the extended WebDAV server for
creating new shares. Mobile clients are able to import those
shares and update the notes, while handling of share partic-
ipant is not supported due to the restricted user interface.

There are still a few areas for future improvement, mainly
in terms of shared notes security and conflict handling.

5.1 Security related
Concerning the manifest file and the handling of share

participants there are some issues that we need to handle.
As described in section 4.2, the manifest file contains a list of
participant keys. Assuming that a possible attacker some-

how gains access to the location where the shared file is
stored, the following scenario would be possible: The at-
tacker is unable to decrypt the files. However, the layout
of manifest files is publicly documented, the attacker could
construct a new one. He would have to know somebody else
who is participating, for example Bob. The attacker would
now insert his own key-id plus the key-id of Bob into the
manifest. The name of the item that is shared is simply the
name of the file that is stored along with the manifest. The
next time Bob synchronizes, he reads the keys he needs to
synchronize to, and encrypts the files (including the shared
item) for these keys (which now includes the attackers key).
Afterwards, the attacker could simply decrypt the shared
item with his own private key.

This of course only works under the following precondi-
tions: The attacker is somehow known to Bob (he knows his
public key); Bob doesn’t check that all files were encrypted
by the same person; and Bob doesn’t get suspicious that the
recipient-list has changed. To make things worse, it could
be that Bob has never synchronized with the share before,
so it could be possible that he doesn’t even know the old
recipients.

Obviously this scenario would mark a huge risk so it has
to be prevented. There are a few points that need to be done
to achieve this: Bob needs some way to verify that the files
he is looking at have not been tampered with. As stated
above, he might not have had access to the files yet, but
what he already has is the share link. So to give Bob the
possibility to verify the share, there needs to be sufficient
information encoded in the link to verify the authenticity of
the manifest file. One possibility is to encode (parts of) the
public key fingerprint of the “owner” of the share location,
i.e. the person who originally created the node, and to sign
the manifest file with the associated private key. The disad-
vantage is that only the original owner could make modifica-
tions to the manifest, which is problematic for bidirectional
synchronization.

There is a possible variation to this, namely including
all the key-ids (or again alternatively some hash value of
their concatenated values) in the manifest as well as the en-
crypted OpenPGP message, allowing the modified content
to be signed by any of these keys. This has however some
negative side effect: one cannot introduce new people to the
share after it has been sent to all the participants. Depend-
ing on the application scenario, this could be a desired effect,
but very likely it is not.

A second option is to use the server-id, which is not re-
lated to any other value (like the server path, shared file or
anything else) so it cannot be calculated from anything else.
When an attacker creates his own new manifest file, he can-
not know which server-id was in there originally, so it will be
different. An important improvement would then again be
to not directly include the server-id but a hash value of it.
This would make the share link less sensitive against com-
promise, because even if an attacker accomplishes to get the
share link, he would have to find a matching server-id before
being able to trick a user.

A totally different issue is key distribution, which obvi-
ously plays a big role in this system, because every party
needs the public keys of the others. One way is to send
them along with the share links, or to rely solely on PGP
key servers. However, there should be at least some method
to inform the user if they need some additional keys. The

concrete solution is again application and/or scenario spe-
cific and is therefore out of scope of this paper.

5.2 Conflict resolution
When multiple people work on the same note, it is obvi-

ous that version conflicts occur more often, compared to a
single person that only synchronizes different devices. As
conflicts are more prominent, they should be easy to deal
with for the user. Conflict resolution can be automated to
a certain degree. We recommend putting those parts that
are conflicted together in the same “conflict resolution re-
quired” block in the note (one version under the other, with
some symbol indicating that there was a conflict and which
part was found in which version) and inserting items that
only changed in one version. Some of the currently prevalent
versioning systems such as Subversion or CVS use the diff3
algorithm for this task [19].

If one needs to implement similar functionality for their
own application the Google diff-match-patch library is an-
other candidate. The library is available in a wide range
of languages including JavaScript, C + +, Objective-C, and
Lua for example and it is also used by Google itself for their
Documents web application [16]. As described in section 4,
we use it for automatic merging in the Android mobile client
and it was very easy to integrate into our implementation.

There are also systems for peer-to-peer shared synchro-
nization which embrace the fact of uncertain availability in
these distributed environments. These systems use slightly
different approaches towards handling conflicts between dif-
ferent versions. There, not only the latest state of files is rel-
evant for the merging, but also their full history of changes.
A system for handling such version conflicts in a flexible
way was for example created at the Helsinki Institute for
Information Technology [24].

6. CONCLUSION AND FUTURE OUTLOOK
While our current implementation works and shows how

secure sharing can be done, there are undoubtedly numerous
possible improvements. From the usability point of view,
one of the first things would probably be a better integration
into the tools that are responsible for the PGP encryption.
Especially in our android prototype where APG10 is used for
the PGP encryption, there are some disrupting screens that
appear while syncing with which a user has to interact with.
This could certainly be improved via tighter integration into
our application.

A possible direction in which the project might develop in
the future is to usability and on-line cooperation. It would
be a big improvement in terms of interaction, if a system
would bring together the nearly instant cooperation capa-
bilities similar to EtherPad or Google Documents with the
security of our sharing system. Obviously this would not
be realized with file uploads to WebDAV shares, but via
some server, achieving this in a way that is both responsive
while collaborating and still offers the possibility for others
to synchronize with the last changes would definitely be a
challenge.

One step that could be a first one into that direction
could be experimenting with encrypting only diffs and send-
ing them to the collaborators. This would be in some ways
comparable to adding encryption to a versioning system. As

10Android Privacy Guard http://thialfihar.org/projects/apg/

already mentioned in section 2, something similar has been
proposed [25], however in a slightly different way where the
encryption lies before the creation of the diffs.

All parts of our implementation of Private Notes, includ-
ing the Tomboy plugin, the Android and the iOS clients, and
the server scripts are available under open source licenses at
https://gitorious.org/privatenotes.

7. REFERENCES
[1] Android developers web page.

http://developer.android.com/.

[2] Rsa security survey reveals multiple passwords creating
security risks and end user frustration.
http://www.rsa.com/press_release.aspx?id=6095, 2005.

[3] The Legion of the Bouncy Castle web page.
http://www.bouncycastle.org, 2008. accessed 2008-10-13.

[4] Mac os x developer library. http:
//developer.apple.com/library/mac/documentation/,
2009.

[5] Password survey results. http://www.symantec.com/
connect/blogs/password-survey-results, 2010.

[6] Activesync http protocol specification, March 2011.
[7] Microsoft developer network web page.

http://msdn.microsoft.com/, 2011.
[8] O. M. Alliance. Syncml representation protocol, July 2009.

[9] J. M. Ashley. The gnu privacy handbook. 1999.

[10] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
RFC2440: OpenPGP message format, November 1998.

[11] P. Cederqvist. Version Management with CVS. Free
Software Foundation, Inc., 2008.

[12] cnet News. cnet news - dropbox confirms security glitch–no
password required.
http://news.cnet.com/8301-31921_3-20072755-281/,
June 2011.

[13] Dropbox. Dropbox help.
http://www.dropbox.com/help/156, November 2010.

[14] L. Dusseault. RFC4918: HTTP extensions for web
distributed authoring and versioning (WebDAV). RFC 4918
(Proposed Standard), June 2007. Updated by RFC 5689.

[15] N. Ferguson and B. Schneier. Practical Cryptography.
Wiley Publishing, 2003.

[16] Google. Diff, match and patch libraries for plain text.
http://code.google.com/p/google-diff-match-patch/,
2010.

[17] S. Helmer, C.-C. Kanne, and G. Moerkotte. Lock-based
protocols for cooperation on xml documents, 2003.

[18] A. Jönsson and L. Novak. Syncml - getting the mobile
internet in sync. Ericsson Review, 03/2001, 2001.

[19] S. Khanna, K. Kunal, and B. C. Pierce. A formal
investigation of diff3.

[20] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key
agreement. ACM Transactions on Information Systems
Security, 7(1):60–96, May 2004.

[21] D. V. Klein. ”foiling the cracker”: A survey of, and
improvements to, password security, 1990.

[22] H. Larkin. Applying concurrent versioning to serverless
mobile device synchronisation. In ACIS-ICIS, pages
157–162. IEEE Computer Society, 2007.

[23] C. Mascolo, L. Capra, and W. Emmerich. An xml based
middleware for peer-to-peer computing. In 1ST IEEE
INTERNATIONAL CONFERENCE OF PEER-TO-PEER
COMPUTING, LINKOPING (S.

[24] K. Rimey. Version headers for flexible synchronization and
conflict resolution. HIIT Technical Reports 2004-3 2004-3,
November 2004.

[25] N. Shang. Git transparent encryption, October 2010.

[26] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. RFC3010: NFS
version 4 protocol, December 2000.

https://gitorious.org/privatenotes
http://developer.android.com/
http://www.rsa.com/press_release.aspx?id=6095
http://www.bouncycastle.org
http://developer.apple.com/library/mac/documentation/
http://developer.apple.com/library/mac/documentation/
http://www.symantec.com/connect/blogs/password-survey-results
http://www.symantec.com/connect/blogs/password-survey-results
http://msdn.microsoft.com/
http://news.cnet.com/8301-31921_3-20072755-281/
http://www.dropbox.com/help/156
http://code.google.com/p/google-diff-match-patch/

	Introduction
	Related Work
	Note Encryption
	Encryption with Shared Passwords
	Encryption with Asymmetric Keys

	Note Synchronization
	Private Notes synchronization
	Note Sharing

	Discussion and Current Limitations
	Security related
	Conflict resolution

	Conclusion and Future Outlook
	References

