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Abstract
Purpose – The purpose of this paper is to address the design, implementation, performance and
limitations of an environment that emulates a secure element for rapid prototyping and debugging.
Today, it is difficult for developers to get access to a near field communication (NFC)-secure element in
current smartphones. Moreover, the security constraints of smartcards make in-circuit emulation and
debugging of applications impractical. Therefore, an environment that emulates a secure element
brings significant advantages for developers.
Design/methodology/approach – The authors’ approach to such an environment is the emulation
of Java Card applets on top of non-Java Card virtual machines (e.g. Android Dalvik VM), as this would
facilitate the use of existing debugging tools. As the operation principle of the Java Card VM is based on
persistent memory technology, the VM and applications running on top of it have a significantly
different life cycle compared to other Java VMs. The authors evaluate these differences and their impact
on Java VM-based Java Card emulation. They compare possible strategies to overcome the problems
caused by these differences, propose a possible solution and create a prototypical implementation to
verify the practical feasibility of such an emulation environment.
Findings – While the authors found that the Java Card inbuilt persistent memory management is not
available on other Java VMs, they present a strategy to model this persistence mechanism on other VMs
to build a complete Java Card run-time environment on top of a non-Java Card VM. Their analysis of the
performance degradation in a prototypical implementation caused by additional effort put into
maintaining persistent application state revealed that the implementation of such an emulation
environment is practically feasible.

The current paper is an extended version of Roland, M., Langer, J. and Mayrhofer, R. (2013),
“(Ab)using foreign VMs: Running Java Card Applets in non-Java Card Virtual Machines”, in
Proceedings of the 11th International Conference on Advances in Mobile Computing &
Multimedia (MoMM2013), ACM, Vienna, Austria, pp 286-292.
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Originality/value – This paper addresses the problem of emulating a complete Java Card run-time
environment on top of non-Java Card virtual machines which could open and significantly ease the
development of NFC secure element applications.

Keywords Android, Card emulation, Emulator, Java Card, Near field communication, Secure
element

Paper type Research paper

1. Introduction
Smartcards are pervasive in our everyday lives. We use them as keys to buildings, as
bank and credit cards, as bus tickets, as SIM cards in our mobile devices or to
descramble pay-TV. Also many of our identity documents (e.g. passports) contain
smartcard microchips.

While some of these smartcards contain only memory that can be read and written
using a smartcard reader, many smartcards contain a processor that executes complex
software programs, thus the word “smart”. In the past, smartcards typically contained
pre-programmed application-specific software. Today, however, many smartcards
follow an open approach: the smartcard operating system provides a standardized
run-time environment consisting of a standardized programming interface and a
standardized instruction set. Thus, it becomes possible to develop and run applications
independent of the actual hardware and operating system implementations.

The most widespread platform for open and interoperable smartcard applications is
Java Card. The Java Card platform uses a subset of the Java language and has been
optimized for execution on smartcards. While the Java Card platform itself is open,
smartcards are tightly controlled environments. Deployment of software onto
smartcards requires credentials that are typically only known to the card issuer or a
trusted third party. This closed nature of smartcard microchips is particularly an issue
with near field communication (NFC) in mobile devices. NFC card emulation mode,
where a mobile device acts as a contactless smartcard, relies on a smartcard chip, the
secure element, to perform the actual card emulation. The secure element typically
belongs to the manufacturer of the mobile device or to the mobile network operator.
Management of the secure element is often delegated to a trusted service manager. This
closed and complicated environment usually makes it impossible for the average
developer to deploy (even for prototyping and testing) applications to a secure element
(Roland, 2012) – even though approaches toward opening parts of this ecosystem are
starting to appear (cf. Hölzl et al., 2013).

Besides the issue of deploying application prototypes, another issue is in-place
source-level debugging. In the context of the secure element in an NFC-enabled
smartphone, in-place debugging would mean that the Java Card applications running on
the secure element would be debuggable, while they are executed on the smartcard chip
and accessed by apps through regular secure element application programming
interfaces (APIs), as well as by external smartcard readers through the contactless NFC
interface. Thus, a developer could step through the executed code, while the Java Card
application interacts with external application components. However, due to their high
security requirements, current secure element microchips cannot be attached to a
debugger for in-circuit emulation. As a result, it would be helpful for developers to have
an alternative to the secure element which provides an open environment for debugging
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and rapid prototyping of Java Card applications that could later be deployed to actual
secure elements.

In the context of Android-based mobile devices, a Java Card emulator (cf. Roland, 2013)
could be built on top of the system-native Dalvik virtual machine (VM) – a VM that executes
translated Java code. As the Java Card language is a subset of the Java language, it is possible
to compile Java Card applications for other Java virtual machines. Only the Java
Card-specific APIs would need to be added to the Java run-time environment. The in-place
debugging and rapid prototyping capabilities could be provided by interfacing the Java Card
emulator to existing secure element APIs (e.g. the Open Mobile API) and to host card
emulation mode APIs which are available on some Android-based devices (cf. Android Open
Source Project, 2013; Roland, 2012; 2013).

The main benefit of using a standard Java virtual machine for emulation is the
seamless integration with existing debuggers. For instance, the Dalvik virtual machine
already provides source-level debugging using the Android debugger. Similarly, a Java
SE virtual machine also comes with ready-made debugger integration. When creating a
Java Card emulator with a custom Java Card virtual machine, however, these
capabilities would also have to be manually implemented.

Nevertheless, there is one big issue when running Java Card applications in non-Java
Card virtual machines: a Java Card virtual machine has a significantly different life cycle
compared to other Java VMs. While a standard Java VM typically starts when the Java
application starts and terminates when the Java application terminates its execution, the
Java Card VM starts when the smartcard is manufactured and terminates when the
smartcard is destroyed. Thus, the state of the Java Card VM and the applications that
run on top of it is persistent across the whole lifetime of the card regardless of power
cycles, etc. Besides the differences in the life cycle, the Java Card run-time environment
has a transaction mechanism that assures atomic modification of application data and
rollback in case of torn transactions.

In this paper, we evaluate these differences in virtual machine and application life
cycles and their impact on Java VM-based Java Card emulation. We base these
evaluations on specific scenarios for secure element emulators for the Android platform
(cf. Roland, 2013). We discuss possible solutions to the problems that arise from these
differences in the life cycles and propose an implementation for persisting Java Card
application state in non-Java Card virtual machines. Our solution uses the Java reflection
API to collect information about classes and objects and to store and later reconstruct
the persistent objects of a Java Card application. We implement a working prototype of
the persistence framework for Java SE and Android that fulfills all qualities that we need
for persisting Java Card applications. We then integrate our persistence framework into
the open-source Java Card simulator jCardSim running on top of the Java SE virtual
machine. Finally, we evaluate the performance of our Java Card emulation environment
comparing scenarios with and without the persistence mechanism.

2. Java Card
Java Card technology is a subset of the Java programming language combined with a
run-time environment that is optimized for tiny embedded devices like smartcards (Sun
Microsystems, Inc., 2006b). The run-time environment consists of a Java Card virtual
machine (as defined in Sun Microsystems, Inc., 2006c), a Java Card-specific API and Java
Card-specific security features.

293

Life cycle of Java
Card applets

D
ow

nl
oa

de
d 

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

K
A

O
H

SI
U

N
G

, P
ro

fe
ss

or
 R

en
e 

M
ay

rh
of

er
 A

t 1
8:

06
 0

8 
D

ec
em

be
r 

20
14

 (
PT

)



To assure that Java Card applications have a small footprint that matches the constrained
resources of a smartcard, many features of the Java language are unavailable in the Java
Card language. For instance, Java Card only supports the primitive data types boolean, byte,
short and optionally int. Furthermore, most of the core API classes of the Java language are
unsupported. Nevertheless, the Java Card language is a true subset of the Java language.
Thus, all Java Card language constructs also exist in the Java language. However, the Java
Card API provides several classes with smartcard-specific functionality like communication
using smartcard commands, management of PIN codes and cryptographic keys and
execution of cryptographic operations that do not exist in the Java API.

The Java Card virtual machine is the abstraction layer between Java Card
applications and different device platforms. Interoperability across different hardware
platforms is provided through a common instruction set and a common application
binary format. The Java Card VM lifetime is equivalent to the lifetime of the smartcard
microchip (Sun Microsystems, Inc., 2006c): the VM is installed and started during the
manufacturing process and terminates when the chip is destroyed. In between, the VM
lifetime spans even across any power cycles (though the VM appears to be inactive while
power is removed). This means that Java Card applications that run inside the VM also
run across power cycles. Applications, their data and their state are preserved through
storage in persistent memory (e.g. EEPROM).

The main entry point of a Java Card application is an applet instance. An applet provides
several public methods for interaction with the Java Card run-time environment. The
applet’s install method is invoked to create and initialize an applet instance. After
installation, applet instances remain in a suspended state until they are explicitly selected
through a smartcard command. During selection, the applet instance’s select method is
invoked to prepare the applet for further processing. Once an applet is selected, all further
smartcard commands are forwarded to that applet instance by triggering its process method.
On selection of another applet instance, the current applet instance’s deselect method is
invoked and the applet instance returns into suspended state. Similarly to the Java Card VM,
Java Card applets execute forever (or until they are explicitly uninstalled). However, applet
instances return to the suspended state on power loss.

In addition to storing application data associated with applet objects in persistent
memory by default, the Java Card platform provides atomic transactions on these data.
That is, certain modifications to persistent data can be guaranteed to be either
performed completely or not to happen at all. Through that transaction mechanism, an
applet can assure that data that belong to one transaction is consistently stored to
persistent memory. Thus, when a transaction is aborted (either explicitly or though
power loss), any changes to persistent data are rolled back to the state before the
transaction started. Only when a transaction completes successfully, changes to
persistent data are committed to persistent memory.

3. Secure element emulators
Several Java Card simulators exist which allow simulation and testing of Java Card applets
without real smartcard hardware. The Java Card reference implementation, for instance,
integrates with the Java ME secure element API. However, it can only process compiled Java
Card applications and does not permit source-level debugging. Several smartcard
manufacturers provide their custom Java Card simulation environments that simulate their
specific smartcard architectures [e.g. G&D Java Card Simulation Suite (Gisecke & Devrient,

IJPCC
10,3

294

D
ow

nl
oa

de
d 

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

K
A

O
H

SI
U

N
G

, P
ro

fe
ss

or
 R

en
e 

M
ay

rh
of

er
 A

t 1
8:

06
 0

8 
D

ec
em

be
r 

20
14

 (
PT

)



2010) and Gemalto Simulation Suite (Gemalto, 2010)]. Moreover, there exist Java Card
simulators that run on top of standard Java virtual machines [e.g. Java Card Workstation
Development Environment (Sun Microsystems, Inc., 2006a) and jCardSim, which is
discussed in more detail below]. Unfortunately, none of these simulators are known to
integrate with current smartphone operating systems (specifically with the Android
platform). Also, none of these simulators can be used for true prototyping of secure element
applications.

As a consequence, we developed scenarios for integrating an open environment for
debugging and rapid prototyping of secure element applications on Android devices and on
the Android platform emulator (cf. Roland, 2013). The resulting Java Card emulator can be
used as a drop-in replacement for a secure element on the Android platform and to provide
functionality comparable to a regular secure element. While the emulator operates at a much
lower security level, it is an open platform that is available to all developers, and that does not
require the complicated and closed ecosystem of a regular secure element chip.

3.1 Java Card emulator for the android emulator
The idea behind this concept is to use the existing open-source Java Card run-time
environment simulator implementation jCardSim (see Dudarev, 2013) and to integrate it
with the Android emulator as well as to interface it with card emulation hardware. The
simulator runs on top of the Java SE virtual machine. Thus, it already runs in an
environment that supports source-level debugging. jCardSim currently supports only
two ways of interacting with the simulated applets

(1) scripts that consist of smartcard commands; and
(2) access through the Java Smart Card IO API.

Figure 1 shows our scenario for integrating the Java Card emulator with the Android
emulator. The open mobile API-based secure element API of Android (cf. Hölzl et al.,

Figure 1.
A Java Card emulator

attached to the Android
platform emulator

(Roland, 2013)
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2013; SIMalliance, 2012) is extended with a terminal interface that connects to jCardSim.
Moreover, the card emulator hardware (e.g. an NFC reader in software card emulation
mode) is attached to jCardSim so that smartcard commands can be passed between the
card emulator hardware and the simulator.

3.2 Java Card emulator for android devices
In the second scenario (see Figure 2), the Java Card emulator is embedded into the mobile
phone system as a middleware. Thus, in this scenario, jCardSim is ported to Android
and runs on top of the Dalvik virtual machine. Again, an interface to access the emulator
is added as a terminal interface to the open mobile API-based secure element API
implementation of Android. Moreover, the emulator is connected to the host card
emulation API (sometimes also called “soft-SE” or “software card emulation”) that is
available on CyanogenMod and on Android 4.4 devices (cf. Android Open Source
Project, 2013; Roland, 2012; Yeager, 2012).

3.3 Deficiencies of these scenarios
The main problem with these scenarios is the persistent nature of the Java Card VM.
While the Java Card virtual machine and the objects it uses to represent applications and
their data can persist throughout the whole lifetime of a smartcard, the Java VM and the
Dalvik VM are both processes of the underlying operating system and only run while an
application process is executing. Thus, the lifetime of the latter two VMs is bound to the
lifetime of the Java applications that run on top of them. Both, the Java VM and the
Dalvik VM, terminate when the last execution path of a Java application terminates,
when the VM process is forced to terminate by the operating system or when the host
system resets.

Figure 2.
A Java Card emulator
integrated into an
Android device
(Roland, 2013)
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As a consequence, simply porting the Java Card API to the Java VM or the Dalvik VM
does not provide the same level of capabilities as the Java Card run-time environment.
Specifically, persistence of objects is not available by default. This means, however, that
Java Card applets (as well as their data and their state) are lost when the virtual machine
that runs the emulator terminates. This is usually not a problem for short-term
simulation and debugging sessions where the Java Card emulator is actively used.
However, when emulating a secure element in a mobile device, we also want to perform
long-term tests and prototyping. In these scenarios, an ideal secure element emulator
would even persist any application state across power cycles of the mobile device.

4. Application and virtual machine life cycles
Applications running on top of non-Java Card VMs have fundamentally different life
cycles as compared to Java Card applets on the Java Card VM. The Java Card VM
lifetime spans across the whole smartcard lifetime. Due to use of persistent memory
technologies for application and data memory, applications and their state persist from
installation until uninstallation. Thus, an application appears to continue to run across
power and reset cycles. Moreover, the Java Card run-time environment provides a
transaction mechanism that guarantees certain operations to be atomic.

4.1 Java SE virtual machine
In our scenario of a Java Card emulator attached to the Android emulator, the Java Card
emulator environment runs on top of the Java SE virtual machine on a PC system. The
Java Card emulator is completely detached from the Android system and the Android
emulator instance. As a consequence, power cycles and reconfiguration of the Android
system do not interfere with the life cycle of the Java Card emulator. This makes it
possible to persist the state of Java Card applications even across multiple boot-ups of
the Android system inside the Android emulator. Only a restart of the host operating
system or of the Java VM executing the Java Card emulator would result into loss of Java
Card applet/application state.

Nevertheless, for prototyping and long-term tests (particularly in combination with
external smartcard readers through host card emulation), it would be necessary to
preserve the Java Card application state across multiple executions of the Java Card
emulator. A facility built into Java SE that could potentially help with persisting object
state across Java VM life cycles is serialization. However, the Java serialization
mechanism typically requires modifications to the Java Card application source code.

Another significant difference between Java SE and Java Card is the transaction
mechanism. Java SE does not support transaction atomicity. This may not be an issue
for the Java Card emulator in many situations, as the emulator would continue to run
even if the connection between the emulator and the secure element API or the
connection between the card emulation device and an external reader is torn. Thus, any
remaining code would be executed because there is no power loss on disconnecting the
emulator. However, a Java Card application could also intentionally abort a transaction.
In that case, the emulator would need to rollback the application state to the state before
the transaction started.

jCardSim, the open-source implementation that we use as the basis for our emulator
scenarios, has been designed to run on top of a Java SE virtual machine. Consequently,
it suffers from the above problems. In its current version, it is neither capable of
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persisting state across simulation sessions nor of simulating the Java Card atomic
transaction mechanism.

4.2 Android Dalvik virtual machine
Java applications on Android consist of windows (so-called activities), background
services, broadcast message receivers and databases (so-called content providers). All
components of one application typically share one Dalvik virtual machine that runs as
an operating system process.

Activities are only active while they are visible and in the foreground. Broadcast
receivers are only active while they process a received message. Therefore, the secure
element emulator would typically run as a service in the background. As Android is
designed for resource-constrained mobile devices, application components (like
activities and services) and their virtual machine container processes may be shut down
at any time to free resources. While a process with a foreground activity is unlikely to be
terminated due to resource shortage, background services are significantly more likely
subject to resource reuse.

To recover from situations where an Android application was terminated by the
system, the Android platform already contains a mechanism for storing and recovering
application state. However, Java objects representing application state and data are not
persisted automatically. Instead, it is up to each application to manually store and
recover data that are relevant to current application state. Therefore, the Android state
recovery is not comparable to the Java Card VM persistent memory.

As a result, the situation for Java Card emulation inside the Dalvik VM is even worse
than with the Java VM. The Dalvik VM and, consequently, the state of all Java Card
applications running inside the emulator may be lost as a result of device reboots or as
a result of the system automatically terminating idle or potentially unused processes.
This would be an issue for long-term tests and for prototyping of Java Card applications.

For the transaction mechanism, the same limitations as with the Java VM apply.
Thus, the Dalvik VM and the Android platform do not support rollback of application
state to a defined boundary.

4.3 Resulting problem
According to the specification of the Java Card run-time environment (Sun
Microsystems, Inc., 2006b), applet instances (i.e. objects instantiated from an applet
class) and objects referenced from a persistent object field or from a class static field are
persistent. In addition, the Java Card transaction mechanism requires that application
state can be saved during application execution and that the application state can later
be rolled back to these defined boundaries.

However, preserving application state in non-Java Card virtual machines requires
manual implementation. Typically, this would mean that modifications to the Java
classes of the Java Card applications would become necessary (e.g. to extract and
implant the state of private member fields). However, simulation and debugging should
be performed with the original applet source code to keep source code interoperable
between the emulator and a real smartcard. Moreover, modifications could potentially
cause mismatches to the execution on real smartcard hardware. Therefore, the emulator
should be capable of extracting and implanting the state of the emulated Java Card
applications without requiring modifications to their source code.
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5. Related work and approaches
A facility for persisting state in Java is serialization. Serialization permits a graph of
connected objects to be converted into and restored from a byte stream (Barry and
Stanienda, 1998). Serialization, however, has several disadvantages: serialization works
only for one complete directed graph of connected objects that is generated by starting
at one root node and iterating through all objects reachable from that node. Serializing
and deserializing from multiple root nodes would result into completely separated object
graphs after deserialization. Thus, even if two graphs referenced the same object before
serialization, they would reference two separate instances after deserialization. While
this could be overcome by merging all potential root nodes into a new object (e.g. a list
that references all root nodes) and using that new object as the root node for serialization,
it would be impossible to serialize or deserialize only a specific part of an object graph.
Also, it is not possible to automatically serialize or deserialize the static members of a
class. Moreover, Java requires serializable classes to be tagged as serializable. Thus,
modifications to the source code of the classes are necessary. However, there also exist
serialization frameworks (e.g. Kryo) that do not require tagging. Still, only serialization
of an object graph as a whole would be possible.

Another technique that could potentially be used to introduce persistence to Java
objects without modifying the actual classes is aspect-oriented programming (AOP).
AOP is used to add functionality to a program on a level that is independent of a
program’s abstraction layers and modularization. Rashid and Chitchyan (2003) describe
how aspects can be used to add persistence to existing classes. However, their
implementation requires these classes to fulfill certain qualities. For instance, getter and
setter methods are expected to retrieve and modify an object’s fields. Moreover, AOP
frameworks for Java usually need pre-processing of the application source code or
post-processing of byte code to map the aspect-oriented Java code into code that runs on
a regular Java VM. This is, for instance, the case with AspectJ for Java SE and Android.
As a result, source-level debugging of Java Card applications would be severely
hindered.

Similar to AOP, frameworks like Xposed for Android permit to hook into arbitrary
method calls of an existing application and to execute customized code on these hooks.
However, Xposed currently only supports intercepting method calls and does not permit
to directly hook into updates on an object’s fields.

A programming technique that comes close to what we would like to achieve is
object-relational mapping (ORM). There exist many ORM frameworks for Java (e.g.
ActiveObjects, Apache Cayenne, Hibernate and ORMLite). With ORM, the objects of an
application are mapped into a relational database. Thus, it becomes possible to store
objects to and retrieve objects from a relational database. Nevertheless, typical ORM
frameworks need modifications of the application source code (e.g. adding annotations,
adding no-argument constructors or even adding getter/setter methods to access certain
fields; cf. Cattell and Barry, 1997). Overall, ORM seems to require detailed knowledge of
application-specific data structures to implement the database mapping. However, this
is not the case, as we want our solution to be capable of handling arbitrary Java Card
applications.

A technique comparable to ORM is object data management group (ODMG) binding.
This technique maps Java objects to an object-oriented database. Therefore, the schema
of the database that contains the persistent Java objects matches the Java classes
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(Barry and Stanienda, 1998). While ODMG bindings do not require modifications to the
source code of persistent classes, these bindings require either a pre-processor to add the
bindings to the Java source code or a post-processor to add the bindings to the Java byte
code (Cattell and Barry, 1997). Thus, they would have a significant impact on
source-level debuggability.

6. Proposed solution
While existing techniques already provide means to persist Java objects, our ideal
solution should fulfill the following qualities:

• Networks of objects starting from one or more root nodes should be storable to and
recoverable from persistent memory maintaining all references.

• Static fields of classes should be persistable by specifying a list of classes.
• Full or partial object graphs should be restorable to a defined previous state.
• No modifications to the source code of Java Card application classes should be

required to be able to use the same code on a card and in the emulator.
• No pre- or post-processing should be required to maintain source-level

debuggability with existing tools.
• The solution should work for both Java SE and Android.

Therefore, we decided to create our own implementation of a persistence mechanism for
Java. Our solution makes use of the Java reflection API which is available for Java SE as
well as for Android. Reflection has the advantage that no knowledge of the classes and
their fields is required at compile time. Moreover, we use the Objenesis library to
instantiate Java objects without calling any constructor of a class in the process of
deserialization.

Our implementation creates an in-memory copy of the object graphs of all Java Card
applications installed and running in our emulator environment. For each object in the
object graph, the in-memory copy consists of a wrapper object (“state representation”)
that references the original object and contains references to all its member field state
representations. Similarly, for each array, the wrapper contains a reference to the
original array as well as to each array element state representation. For primitive data
types, the state representation contains a copy of the primitive value.

For initial collection of application state, our implementation starts at defined root
nodes (the Java Card applet instances that are registered in the Java Card run-time
environment and all static fields of classes in the installed Java Card application
packages). It then iterates through the whole object graphs spanning from these nodes,
creates an object state representation for each new object, records the object state
representation in a list of references and links the object state representations to each
other to create the in-memory copy of the whole object graphs (see Figure 3 for an
example).

To update the state representation of a (potentially) modified object and its connected
partial object graph, our implementation starts at the state representation of that object
and checks if all fields still match the recorded references. If changes are discovered,
links are updated and wrapper objects for new objects are created. This process is
repeated for all parts of the object graph reachable from that object.
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Similarly, to revert the state of an object and its connected partial object graph to the
state that was previously stored in the in-memory copy of the object graph, our system
starts at the state representation of that object and recursively restores all fields to the
values and references stored in the object state representation.

The object state representation is designed so that the whole in-memory copy of the
object graph can be easily serialized to and deserialized from an XML file. During
serialization, each state representation recorded in the list of references is processed and
its contained information (reference hash code, type information, fields and associated
reference hash codes for objects, a list of array element hash codes for arrays or the

Figure 3.
In-memory object state

representation generated
for an example object obj
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primitive value for primitive data types) is written to the XML file. Similarly, a list of
known root objects and classes keeps track of known root references and class static
fields. Deserialization parses the XML file, recreates the in-memory copy of the object
graph and recursively re-instantiates all objects, arrays and primitive values based on
the deserialized object state representation (see Figure 4).

7. Implementation
In this section, we present the central parts of our implementation.

7.1 Uniquely identifying objects
The first obstacle when collecting information about the object graph is to uniquely
identify objects. The Java Object base class provides a hashCode( ) method that returns
a 32-bit integer value for all objects. This hash code has been designed for fast indexing
and clustering in hash tables. The Java SE API (Oracle, 2013) requires that this hash
code is equal for any two objects that are equal according to the result of their equals( )
method. The default behavior of the Object.equals( ) method is to be only true if two
compared references refer to the same object. However, classes may override the
equals( ) method to introduce a more relaxed equality relationship between objects that
could permit different objects to still be equal. As the contract for the hashCode( ) method
requires the same hash code value to be returned for equal objects, all such objects
would return the same hash code. To overcome this, the Java API provides a method
System.identityHashCode( ) that returns the hash code value that would be returned by
the default implementation of Object.hashCode( ) for any object. Unfortunately, even in
that case, the Java SE API (Oracle, 2013) requires only that the hash code value is equal
for one and the same object, but it does not guarantee that unequal objects have different
hash code values. Therefore, even using the System.identityHashCode( ) method, hash
code collisions may occur. Consequently, the Java hash code implementation cannot be
used to uniquely identify objects.

Figure 4.
Deserialization of
in-memory copy of object
state and recreation of
object graph
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Effectively, the only way to check that two references refer to the same object is a
comparison with the �� operator (x �� y). This fact can be used to assign unique
identifiers to objects. A map can be used to map a list of object references to a list
containing their unique identifier values. Whenever a unique identifier is needed for an
object, the reference is looked up in the list of object references using the �� comparison
operator. If a unique identifier has previously been recorded, the object reference will be
found and will map to a unique identifier value. Otherwise a counter counting all
registered objects is incremented by one, and that value is registered in the map as the
new unique identifier for that object reference. A similar approach has been used by the
Kryo framework to map object references to their serialization position.

Moreover, once a unique identifier is no longer needed, the reference can be removed
from the map and the unique identifier can be marked as reusable (in a list of reusable
identifiers). This is useful to prevent an overrun of the overall object counter and to save
memory used by the unique identifier map.

In addition, immutable numeric primitives can be considered equal if they are of the
same primitive type and have the same primitive value. Therefore, their object identifier
can be calculated based on their type and value information instead of using the
map-based approach. This simplification significantly reduces the effort required to
keep track of object references.

7.2 Reference list
The in-memory copy of the object graph is recorded in a list of references. The list of
references maps unique object identifiers to object state representations. Whenever a
new object is found, its object state representation is added to the list of references. When
an object field refers to an object that has already been recorded that reference can be
resolved using the reference list. Thus, the in-memory copy of the object graph can be
created without duplicating objects that are referenced from multiple places. Moreover,
serialization of the whole object graph can be performed by linear iteration over the
reference list.

7.3 Iterating through the object graph
To create an in-memory copy of the object graph, our implementation collects object
state by starting at defined root nodes. Following the Java Card run-time environment
specification (Sun Microsystems, Inc., 2006b), these root nodes are the Java Card applet
instances that are known to the run-time environment, as they and any objects
referenced from their fields are supposed to be persistent.

For each object, it is determined if the object already exists in the list of references. If
it does, the existing object state representation is used. Otherwise, a new object state
representation is created and registered. If the object is a primitive value, a state
representation of this primitive value is created. If the object is an array, an array
state representation is created and the object state collection is repeated for each array
element. The object state representation of each element is then linked to the parent
object state. Similarly, if the object is neither a primitive value nor an array, each
non-static field that is declared by the object class or any superclass is processed and
linked to the parent object. Consequently, the whole object graph is copied by recursive
iteration through all fields/elements spanning from the root nodes (see Figure 5).
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7.4 Iterating through classes
The Java Card run-time environment specification (Sun Microsystems, Inc., 2006b)
defines that, besides the object graphs spanning from Java Card applet instances, all
static fields of all classes within a Java Card application package are persistent.
Therefore, also the object graphs spanning from all static fields of classes have to be
recorded. In our prototype, we chose to manually define a list of classes for each Java
Card application loaded into the emulator. Based on that list, our implementation
iterates through each declared static field and collects the associated object state
representation (see Figure 6).

The reason why we chose to manually define a list of classes was simplicity during
the development of our prototype. A good solution will depend on the framework that is
provided to developers for adding application packages to our Java Card emulator
middleware. The Java VM itself does not provide an easy means to get a list of all classes
at run time. The origin of this limitation is that the Java class loader only loads classes

ObjectState process(Object object, Class clazz) { 
if (exists(object)) { 

return getExistingObjectState(object); 
  } else { 
    ObjectState objectState; 

if (isPrimitive(object) || clazz.isPrimitive()) { 
      objectState = new PrimitiveValue(object); 
      register(objectState); 
    } else if (isArray(object) || clazz.isArray()) { 
      objectState = new ArrayState(object); 
      register(objectState); 

for (Object element : toArray(object)) { 
        ObjectState elementState = 
                process(element, 
                        getComponentClass(object)); 
        objectState.addElement(elementState); 
      } 
    } else { 
      objectState = new ObjectState(object); 
      register(objectState); 
      Class objectClass = object.getClass(); 

while (objectClass != null) { 
for (Field field : objectClass.getDeclaredFields()) { 

          field.setAccessible(true); 
if (!Modifier.isStatic(field.getModifiers())) { 

            Object fieldValue = field.get(object); 
            Class fieldType = field.getType(); 
            String fieldName = objectClass.getName() + 

"#" + field.getName(); 
            ObjectState fieldState = 
                    process(fieldValue, fieldType); 
            objectState.addField(fieldName, fieldState); 
          } 
          objectClass = objectClass.getSuperclass(); 
        } 
      } 
    } 

return objectState; 
  } 
}

Figure 5.
Iterating through the
object graph
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on demand (McManis, 1996). One possible approach could be that developers add their
Java Card application in the form of JAR files. In that case, our emulator could traverse
the list of class files in that JAR file and automatically build the list of classes.

7.5 Serialized object graph
The classes used for state representation of objects and class static fields were designed
so that they can easily be serialized to and deserialized from XML. The resulting XML
file (see Figure 7) is used as the back-end database for persisting object state. Three lists
are used for serialization:

(1) the list of references, which contains the state representation of each object in the
object graph;

(2) the list of classes, which contains the state representation of all classes included
in state recording; and

(3) the list of root objects (i.e. object instances that can be referenced by a constant
name across multiple executions).

7.6 Deserialization and recreation of object graph
During the first step of deserialization, the three lists (references, classes and root
objects) are recreated from the XML file. Based on the object identifiers, links between
the state representations can be re-established.

As the next step, the original object graph is recreated. For each primitive value, a
new instance of that value is created. For each array state representation, a new array of
the given type and length is created. The array elements are then filled with references
to the respective objects. For each object, a new instance is created using the Objenesis
library:

Object instance � ObjenesisHelper.newInstance(objectClass);

This avoids calling the constructor of a class for object creation and permits easy
instantiation of classes that do not have a no-argument constructor. As the complete
state of the object is restored from serialized data, processing of the constructor is not
necessary.

for (Field field : clazz.getDeclaredFields()) { 
  field.setAccessible(true); 

if (Modifier.isStatic(field.getModifiers())) { 
    Class fieldType = field.getType(); 

if (!(Modifier.isFinal(field.getModifiers()) && 
          (fieldType.isPrimitive() || 
           (fieldType.isArray() && 
            fieldType.getComponentType().isPrimitive())))) { 
      Object fieldValue = field.get(null); 
      String fieldName = clazz.getName() + 

"#" + field.getName(); 
      ObjectState fieldState = 
              process(fieldValue, fieldType); 
      classState.addField(fieldName, fieldState); 
    } 
  } 
}

Figure 6.
Iterating through classes
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Then, each field is restored with its primitive value or with a reference to the respective
object (see Figure 8). This process is performed recursively for all root objects and all
class static fields to recreate all reachable objects in the object graph. Moreover, the
unique object identifiers are mapped to the new objects.

7.7 Updating and reverting objects
Besides serialization and deserialization of the whole object graph, we also want to be
able to update and revert subgraphs starting at any object.

<References> 
  <ObjectState hashCode="0" fieldType="null" /> 
  <ObjectState hashCode="1" fieldType="com.mypkg.myclass">
    <Fields> 
      <Field name="com.mypkg.myclass#field1" hashCode="2" /> 
      <Field name="com.mypkg.myclass#field2" hashCode="3" /> 
      <Field name="com.mypkg.myclass#field3" hashCode="1" /> 
    </Fields> 
  </ObjectState> 
  <ArrayState hashCode="2" fieldType="[L...;">
    <Elements elementType="...">
      <Element hashCode="4" /> 
      <Element hashCode="5" /> 
      <Element hashCode="6" /> 
    </Elements> 
  </ArrayState> 
  <PrimitiveValue hashCode="3" fieldType="java.lang.Short">
    <Value primitiveType="eShort">42</Value> 
  </PrimitiveValue> 

(...) 

</References> 

<Classes> 
  <ClassState className="com.mypkg.myclass">
    <Fields> 
      <Field name="com.mypkg.myclass#INSTANCE"

hashCode="1" /> 
    </Fields> 
  </ClassState> 
</Classes> 

<NamedInstances> 
  <NamedInstance name="obj" hashCode="1" /> 
</NamedInstances> 

Figure 7.
Serialized object graph in
XML

for (Entry<String, ObjectState> entry 
          : fields.entrySet()) { 
  String fieldName[] = entry.getKey().split("#", 2); 
  ObjectState fieldState = entry.getValue(); 
  Class clazz = Class.forName(fieldName[0]); 
  Field field = clazz.getDeclaredField(fieldName[1]); 
  field.setAccessible(true); 
  fieldState.restoreInstanceToField(field, instance); 
}

Figure 8.
Restoration of object fields
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During an update, the in-memory copy is updated to reflect modifications on the
underlying objects. Starting at the node to be updated, we recursively iterate through all
fields (and array elements) and check if the fields refer to the same objects as before. If a
modification is detected, the object state representation is updated so that all fields map
to the object state representations of the new references. If a new object is discovered, a
state representation is created and added to the list of references.

During a reversal, the underlying objects are reverted to the state that was previously
recorded in the in-memory copy. Similar to the update procedure, the objects are
processed by recursively iterating through all fields (and array elements). Each field/
array element is modified to refer to the object that it referenced at the previous update.

Moreover, for both update and reversal each processed object is marked as processed
to prevent re-processing in case of loops in the object graph.

7.8 Garbage collection
So far, object state collection has only added objects, but did not remove them if they are
no longer used in the object graph. To permit garbage collection on such objects, as soon
as an object state representation is no longer linked from any other object state
representation and is none of the known root objects, it is removed from the list of
references. Moreover, the unique object identifier that has been assigned to that object is
freed for reuse.

7.9 Integration with jCardSim
Several steps have been taken to integrate our persistence framework into jCardSim:

• When the emulator instance is started, existing serialized object state (XML file) is
deserialized to recreate the state of a previously saved Java Card run-time
environment.

• When applet packages are installed into the emulator environment, they and all
the classes contained in the package are registered to our persistence mechanism.

• After each command–response sequence (application protocol data unit
exchange), the in-memory copy of the object state of the applet and all classes
belonging to the application package containing the applet is updated.

• When an applet starts a new transaction, the in-memory copy of the object state of
that applet and all classes belonging to the application package containing that
applet is updated.

• When an applet aborts a transaction, that applet and all classes belonging to the
application package containing that applet are reverted to the in-memory copy of
the object state.

• When the emulator instance is terminated, the in-memory copy of the object state
is serialized to persistent storage (XML file).

8. Performance
To measure the performance of our persistence mechanism, we created two test
scenarios and run them on the Java SE 7 (r51) virtual machine on Windows 7 64 bit on an
Intel i5 (2.67 GHz):

(1) In the first scenario, we use an applet that contains a simple data structure
consisting of a numeric value of type short, a reference to the applet itself and an
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array of objects, where each object contains two numerical value fields (one of
type short and one of type byte). The applet has two commands, one that simply
responds with status “success” and one that changes the applet-internal state by
changing the numeric value fields and by replacing elements of the array with
new object instances. Thus, this scenario shows the performance of the state
extraction with and without modifications of the application state.

(2) In the second scenario, an applet that contains various cryptographic keys is
used. For this scenario, various cryptographic operations (key generation,
encryption, decryption, etc.) are performed within the applet. After each run of
the cryptographic operations (causing significant changes to the internal
application state), the performance of a simple ping-pong command–response
sequence that does not cause any internal state change is measured. Thus, this
scenario shows how the performance of the overall system varies after recording
significant changes of the application state.

Both scenarios are performed with and without the persistence mechanism being
enabled.

Figure 9 shows a comparison of the command–response delay in scenario 1 for array
sizes of 10, 100 and 1,000 elements over 10 repetitions with 500 command–response
cycles each. While the average command–response delay without the persistence
mechanism is around 7.7 ms for all cases, the average command–response delay
increases to around 13.6 ms for 10 array elements, to around 15.8 ms (no state changes)
and 16.4 ms (with state changes) for 100 elements and to around 27.8 ms (no state
changes) and 43.4 ms (with state changes) for 1,000 elements. Thus, the average
additional command–response delay induced by the persistence mechanism is about:

• 5.9 ms for 10 array elements regardless of modifications to application state;
• 8.1 ms for 100 array elements (with an additional 0.6 ms if the application state is

modified upon every command); and

(a) in the case that no data is modified

(b) in the case that no data is modified

,

,

,

,

,

,

,

,

Figure 9.
Average additional
command–response delay
(in microseconds) induced
by the persistence
mechanism for scenario 1
for array sizes of 10, 100
and 1,000 elements
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• 20.1 ms for 1,000 array elements (with an additional 15.6 ms if the application state
is modified upon every command).

Figure 10 shows the average and median additional command–response delay in
scenario 2 for the simple ping-pong sequence over 10 repetitions with 500 command–
response cycles each. Between each of the 10 repetitions, a series of commands
triggering various cryptographic operations is issued, causing significant changes to
the applet-internal state. The diagram in Figure 10 reveals a significant increase of
the additional round-trip time caused by the persistence mechanism over time (on
average 19.1 and 22.7 ms for average and median respectively). Therefore, frequent
massive changes of applet state cause a significant degradation of performance over
time. The source of this performance loss is the increased memory consumption due to
frequent changes of the in-memory copy of the persistent application state that cause
many new object state representation objects to be created. Moreover, the unused object
state representation objects that were created in preceding persistent state collection
cycles likely result into additional effort being put into garbage collection by the Java
virtual machine. While this may lead to problems with long debugging sessions, it
would not cause problems for typical prototyping use-cases of secure element
applications. In these cases, it can be expected that actual command–response
sequences with Java Card applications are short (compared to the hundreds of queries
performed in this test) and that the virtual machine container is stopped and restarted in
between many of the command–response sequences causing a cleanup of the VMs
memory.

For rapid-prototyping and debugging sessions of typical NFC secure element
applications (like payment applets, password managers or password verifiers) with
only a low number of exchanged command–response pairs, additional delays in the
range of 10-100 ms per command can be expected. This may accumulate to several
hundred milliseconds per transaction. As contactless transactions in the context of
payment and ticketing applications (cf. EMVCo, 2011; Smart Card Alliance
Transportation Council, 2011) may usually take 300-500 ms and contactless smartcard
standards (cf. ISO/IEC 14443-3, 2011) allow for delays up to several seconds, we assume
that such an additional delay will be acceptable in the context of rapid-prototyping and
debugging. Moreover, it can be expected that many operations carried out by smartcard
applications (e.g. complex calculations, iterations over arrays, etc.) perform significantly
better on a mobile device CPU (or a PC CPU) than on a resource-constrained smartcard
micro-controller.

,

,

,

,

,

Figure 10.
Average and median

additional command–
response delay (in

microseconds) induced by
the persistence

mechanism for scenario 2
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9. Conclusion
In this paper, we showed that there are significant differences between the Java Card
virtual machine and other VMs. These differences cause problems with scenarios where
Java Card applications are emulated on top of non-Java Card VMs. However, we found
that it is possible to overcome the problems caused by different virtual machine life
cycles by adding a persistence framework to the Java and Dalvik virtual machines. Our
solution extracts the state of Java Card applications and creates an in-memory snapshot
of the application state. This snapshot can be stored to persistent memory and later be
re-implanted into the application (recreating all objects, references and primitive
values). Moreover, it can be used to roll back application state to the previously saved
snapshot version. Both capabilities were not present in jCardSim.

We integrated our persistence framework with the open-source Java Card simulator
jCardSim. Based on this simulator environment, we measured the performance of our
in-memory state extraction mechanism for both a minimal Java Card applet example
and a typical Java Card applet. We found that, while the persistence framework induces
a significant overhead in processing time and memory consumption, the extra delays
are still sufficiently low enough to use the framework in our Java Card emulator
environment for in-place testing, debugging and rapid prototyping (cf. Roland, 2013).

Nevertheless, while our approach adds a first implementation of Java Cards
transaction roll-back mechanism to jCardSim, we have not verified this transaction
mechanism for all corner-cases and expect that some of these cases are not covered by
our current implementation. Therefore, further research needs to analyze and address
those corner cases.
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