
A framework for on-device privilege escalation exploit
execution on Android

Sebastian Höbarth
Upper Austria University of Applied Sciences
sebastian.hoebarth@fh-hagenberg.at

Rene Mayrhofer
Upper Austria University of Applied Sciences

rene.mayrhofer@fh-hagenberg.at

ABSTRACT
Exploits on mobile phones can be used for various reasons; a
benign one may be to achieve system-level access on a device
that was locked by the manufacturer or service provider (also
known as ‘jailbreaking’ or ‘rooting’), while potentially ma-
licious reasons are manifold. Independently of the use case
however, a specific exploit is not sufficient to achieve the
desired access rights. Typically, exploits provide temporary
privilege escalation immediately after their execution. To
provide additional access to applications, permanent priv-
ilege escalation is required – in the benign case, including
secure access control for the user to decide which (parts of)
applications are granted elevated access. In this paper, we
present a framework that can use arbitrary temporary ex-
ploits on Android devices to achieve permanent ‘root’ capa-
bilities for select (parts of) applications.

1. INTRODUCTION
Current mobile phone platforms such as Android, iOS, or

Maemo/MeeGo all build on native code for their respective
kernels, libraries. User space utilities and services are there-
fore often susceptible to typical programming errors such as
buffer overflows or missing input sanitization. These errors
typically lead to application crashes or malfunctions, but
can sometimes allow the caller of the corresponding service
or function to cause unintended consequences.

One example for a common class of programming errors is
a buffer overflow in native C code that allows user-provided
(often binary) input to be copied into a some allocated buffer
(typically an array of bytes or characters) without validat-
ing the sizes of input and buffer. If this buffer is allocated
sufficiently close to some program memory that contains ad-
dresses to program code (such as function return addresses
or library function mappings), than a carefully crafted in-
put can overflow the boundaries of the buffer and overwrite
these addresses with new program code contained in the user
input. This new program code will then be executed within
the context of the running service or function and, if this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSSI2011 12 June, 2011, San Francisco, US
.

context is associated with higher access privileges than the
user providing the input, it can be exploited to achieve tem-
porary privilege escalation, forming a so-called buffer over-
flow exploit (cf. e.g. [3, 6]). Another common example is
missing input sanitization, which allows to open, read, write,
or execute files with higher privilege by exploiting a service
or function that is supposed to be limited to a certain path
or type of files but fails to verify this accordingly.

The range of exploits that have already been published
for Android and other mobile phone platforms is manifold,
and their specific attack vectors are significantly different.
Therefore, it is difficult to unify the actual exploit codes
into a common structure or a framework; it is often not
even necessary, considering that exploit codes written in C
are most typically very short (in the order of a few hundreds
of lines of code). However, the steps that need to be executed
after an initial temporary privilege escalation was achieved
are often similar. To progress from temporary to permanent
privilege escalation, the (mobile phone) system needs to be
modified. This typically includes the installation of new
binaries that allow controlled elevation of access rights.

A more typical approach for handling various exploits is
therefore to collect them into a common framework for ex-
ecuting as many exploits as possible and, upon the first
successful execution of any of these exploits, to install per-
manent means for system-level access within the temporary
context returned by the exploit. Metasploit1 is currently the
most comprehensive framework for exploits and is widely
used [7], but focuses on being executed on a standard desk-
top/laptop computer. At the time of this writing, there are
initial ports of Metasploit to iPhone and Nokia N900 and ex-
perimental builds for Android, but all these require a mobile
phone on which the user already has system-level access (i.e.
‘root’ on Android or ‘jailbreak’ on iPhone). In contrast to
Metasploit, we focus on executing Android system exloits on
the devices themselves, with the aim of achieving permanent
privilege escalation on a single device (independently of the
benign or malicious use case after reaching system-level ac-
cess). With the exception of a few closed-source Android ap-
plications that bundle specific exploits with additional (but,
between the applications, different) steps for advancing from
temporary to permanent privilege escalation (most notably
Visionary+ for the HTC Desire HD and z4root for multi-
ple Android devices), we are not aware of other publications
on Android on-device system exploit execution frameworks.
Other related work concerning Android exploits and exploit
prevention is discussed within the respective sections.

1http://www.metasploit.com

http://www.metasploit.com


In this paper, we first analyze the different layers of the
Android security architecture (Section 2) and briefly de-
scribe examples for specific exploits (Section 3). Our main
contribution is to present initial steps towards a framework
for exploiting Android devices (Section 4). This frame-
work is designed to be extensible in terms of various ex-
ploits that are tried one after another, but the subsequent
steps only need to be implemented once for achieving perma-
nent system-level access (‘rooting’ the Android device refers
to the root user on standard Linux kernels, which is not
restricted in any way when no mandatory access control
methods are in use). Furthermore, our framework already
includes some specific examples of using this system-level ac-
cess to demonstrate the wide-ranging capabilities that can
be achieved (Section 4.2).

2. ANDROID SECURITY ARCHITECTURE
The Android platform has been designed to allow the in-

stallation of potentially untrusted applications. This is dif-
ferent from the iPhone security model, where all applica-
tions need to be installed through the Apple store (unless
the mobile phone is ‘jailbroken’ to allow the installation from
different sources) and are (supposedly) verified concerning
their internal behavior prior to their publication. Therefore,
the Android platform implements security mechanisms on
different layers: application sandboxing as a high-level con-
cept makes use of filesystem access control as enforced by
the Linux kernel and permissions granted upon installation
time to – selectively – pass the boundaries of these sand-
boxes. Applications are also cryptographically signed, but
these signatures only provide some level of auditing and no
security-relevant validation procedures before publication.
In the following, we will describe these security layers and
their potential shortcomings in more detail.

Android is based on a standard Linux kernel with mi-
nor modifications (e.g. an additional shared memory im-
plementation and automatic device suspend handling) and
thus inherits the Discretionary Access Control (DAC) on
the filesystem level, which is based around user IDs (uid)
and group IDs (gid). On top of the Linux kernel, Android
uses custom user space libraries and services different from
standard GNU/Linux user space tools. Applications can be
developed in Java and compiled to the custom Dalvik byte
code to be executed by a Just-in-Time (JIT) compiler and
virtual machine on the device or using C/C++ code that is
called from Java using the Java Native Interface (JNI).

2.1 Application Sandboxing
Applications installed on an Android system are confined

to sandboxes that are defined by a unique uid (and matching
gid) and which are created dynamically during the installa-
tion using the Android application manager. User and group
names are equal and start with the ‘app_’ prefix followed by
an automatically incremented counter. The result is that
all applications are installed using separate user and group
identities and – using filesystem access control – are fully
separated from each other and only have limited (typically
read-only) access to system files and services. Calling func-
tions or services outside this sandbox requires the use of
specific APIs which are restricted by permissions granted at
installation time (cf. Section 2.3).

The sandbox restrictions are enforced by the kernel (and
respective user space services/daemons) and therefore ap-

ply to all applications, including native code called directly
via JNI or indirectly using the exec system call. If applica-
tions intend to share data, i.e. to cross the boundaries of two
or more sandboxes on the filesystem level, the same shared
uid needs to be added to the application manifest, which is
only possible when all applications are signed with the same
private key (cf. Section 2.4). The uids and permissions ac-
cording to the package manifests of all applications installed
on a device are stored in /data/system/packages.xml and
are read-only accessible to all applications.

Recently, it has been shown that the Android sandboxing
concept has a fundamental flaw that allows transient priv-
ilege escalation based on calling services offered by other
application which were granted more permissions than the
calling application [2].

2.2 Filesystem Access Control
The filesystem DAC on Android uses the traditional Unix

permissions. When an application stores data, file permis-
sions are by default set to ‘rw-rw---’ (0660 in octal nota-
tion). That is, applications installed with a different uid and
gid can neither read, write, nor execute the files. Files can be
made publicly accessible (i.e. by different uids and gids) us-
ing the MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE

flags when creating them using the Android Java APIs or
with the chmod system call in native C/C++ code. As de-
fined in the standard Unix access control model, this is at
the discretion of the application respectively uid creating
the file (more specifically, the uid having write access to the
directory in which the file is created).

By default, the application data home directory is located
at /data/data/<package name>/ and can contain the fol-
lowing directory structure:

databases is the default location for sqlite databases

libs contains all native libraries of the application, copied
during the installation process

files is the default directory for all files created by the ap-
plication itself at run time

shared prefs contains the XML based shared preferences
for the application

Pre-installed system applications with higher privileges
such as com.android.phone typically also use the same di-
rectory hierarchy. However, these default paths may not
be used on all devices; for example, Samsung devices use
/dbdata/databases/<package name>/ for pre-installed ap-
plications. It is therefore necessary for any exploit frame-
work to be flexible in terms of filesystem layout and be aware
of different default locations for different devices.

During system bootup, parts of the filesystem are mounted
with different options. The directory /data is mounted by
default with the ‘rw,nosuid,nodev,relatime’ options, which
means that files with the so-called ‘setuid’ bit are not hon-
ored. They are executed only with the permissions of the
calling uid instead of being granted the permissions of the
owner of the respective file (which will often be root for files
with ‘setuid’ set). By remounting this partition with

1 mount -o remount ,suid ,rw /data /data

the ‘setuid’ bit will be honored. That is, executing the
respective file will grant the effective uid of the file owner



and all associated permissions. The directory /system is
mounted by default with the ‘ro,relatime’ options, which
adds the constraint of making the whole partition read-only
(note that /system is not mounted with the ‘nosuid’ option,
because the Android system also uses ‘setuid’ binaries under
this location). In order to add or change files under /system,
we can remount the partition with

1 mount -o remount ,rw /system /system

for full filesystem access.
On some devices made by HTC (e.g. the HTC Desire or

HTC Desire HD), the /system partition is additionally pro-
tected with a ‘NAND lock’ (when the ‘@secuflag’ security
flag set to ‘S-On’), which is implemented by the baseband
processor that manages the GSM radio and moderates ac-
cess to the NAND flash. The boot loader and radio ROM
together define the state of the NAND lock and, after the
Linux kernel has been loaded and executed, some NAND
partitions are therefore no longer writable to the Linux ker-
nel when the flag is set to ‘S-On’2. Most notably, all changes
to the /system partition are prevented from being written to
the underlying flash memory (and result in different system
call error codes) even when the partition has been remounted
with read-write access from the kernel point of view. That
is, permanent changes are prohibited while temporary run-
time privilege escalation spanning the boundaries of sand-
boxes is still possible. To work around this restriction, either
the NAND lock needs to be removed (also referred to as ‘S-
Off’) by changing the boot loader and/or radio ROM3, or
the modifications need to be done in recovery mode4, which
is not confined to NAND lock by the boot loader.

2.3 Permissions
In order to leave the sandbox in terms of filesystem ac-

cess or calling functions or services outside the own (group
of) application(s), additional capabilities are needed. The
requested permissions are displayed at application installa-
tion time and the user needs to accept all permissions for
the application to be installed. Unfortunately, it is not yet
possible to grant only some permissions and reject others,
which would require the Android platform to check and po-
tentially query the user for permissions at run time instead
of only at install time.

For access to the restricted APIs, applications must in-
clude permissions such as

1 <uses -permission android:name="android.
permission.INTERNET"/>

in the project AndroidManifest.xml file. If an applica-
tions tries to access some feature without declaring the as-
sociated permission, the attempt will fail and a SecurityEx-

ception will be thrown.
In some cases, there are possible workarounds for this per-

mission system. For example, it is possible to send and

2See e.g. http://tjworld.net/wiki/Android/HTC/Vision/
BootProcess for more details (last retrieved 2011-03-23).
3The AlphaRev (http://alpharev.nl/ and unrevoked
(http://unrevoked.com/) tools use this approach at the
time of this writing (last retrieved 2011-03-23).
4The ‘recovery’ image is a separate combination of kernel
and initramfs image that can be called by the boot loader
when pressing the respective key combinations during device
bootup.

receive data from the Internet without the INTERNET per-
mission by using Intents to start the browser in a security
context that supports the INTERNET permission:

1 startActivity(new Intent(Intent.ACTION_VIEW ,Uri
.parse("http ://www.google.com/upload?imei="
+imei)));

To receive the queried data within the custom application,
it simply registers an Activity in the AndroidManifest with
appropriate Intent-Filters:

1 <activity android:name=".ReceiveActivity">
2 <intent -filter >
3 <action android:name="android.intent.action.

VIEW"/>
4 <category android:name="android.intent.category

.DEFAULT"/>
5 <category android:name="android.intent.category

.BROWSABLE"/>
6 <data android:scheme="response" android:host="

download"/>
7 </intent -filter >
8 </activity >

With this configuration, the Android platform will auto-
matically start the activity ‘ReceiveActivity’ upon receiving
data from the Internet (which may or may not be visible
to the user depending on the speed of the device in terms
of starting and closing intents). Then, data can simply be
queried with:

1 getIntent ().toURI();

which contains the full data object. Note that transient
privilege escalation exploits like this one are currently a
fundamental problem of the Android permissions architec-
ture [2] and will therefore likely need to be fixed in a major
platform revision (as opposed to minor bug fixes distributed
within over-the-air upgrades). Exploiting these issues is or-
thogonal to our approach, because it allows to indirectly
elevate permissions without exploiting other programming
errors. In our framework, after successfully executing any
temporary privilege escalation exploit, an application will
receive complete system-level access and therefore all capa-
bilities without explicitly declaring them in its manifest.

2.4 Application Signing
Each application has to be signed by a private key with

an associated certificate, as unsigned applications cannot be
installed on the device. However, this certificate may be
self-signed or signed by any certificate authority (CA). The
only security benefit of signing is therefore – with current
Android security policies – auditing and non-repudiability:
assigning applications to their developers. Within the ap-
plication signing approach, it would be possible for future
versions of Android (or specific vendor variants) to restrict
installation to applications signed by specific CAs (similar
to the Apple iPhone/iPad security model). As mentioned
above, only applications signed by the same private key may
request the same uid upon installation, which is not relevant
for our exploit framework.

2.5 Exploit Prevention
Current desktop/laptop and server operating systems im-

plement multiple techniques towards preventing (or at least
significantly complicating) the exploitation of some classes
of programming errors. Most of these security measures fo-
cus on buffer overflows and return code or library function

http://tjworld.net/wiki/Android/HTC/Vision/BootProcess
http://tjworld.net/wiki/Android/HTC/Vision/BootProcess
http://alpharev.nl/
http://unrevoked.com/


manipulation in native code and include, among others, so-
called ‘canaries’ (verification values before and after return
code buffers) in user space libraries, Address Space Layout
Randomization (ASLR) techniques to impede guessing cor-
rect function memory addresses, and making executable and
writable areas in system memory mutually exclusive (i.e.
preventing memory regions that can be executed from being
modified, and vice versa).

Unfortunately, Android does not currently implement any
of these security measures, partially because most code is
protected by the Java virtual machine (Dalvik) and (pre-
sumably) for performance reasons. Recent work shows that
ASLR would be possible in Android with minimal perfor-
mance impact and reasonable (but not excellent) entropy [1].
We are not aware of work towards porting other measures
for preventing additional classes of exploits to Android (e.g.
the PaX kernel patches).

3. EXAMPLE EXPLOITS
For reaching the aim of (temporary and subsequently per-

manent) privilege escalation, an applications needs to break
the boundaries of its sandbox, ideally to change its secu-
rity context to that of the root user. As with other Linux
distributions that do not implement additional Mandatory
Access Control (MAC) methods such as SELinux [5] (apply-
ing SELinux to Android has already been proposed, but not
yet implemented in the standard Android tree [9]), Smack [8]
(which will be used as part of the security infrastructure of
the upcoming MeeGo version 1.2), TOMOYO [4], or Ap-
pArmor, the root user is completely unrestricted and has
full system-level access. Within the normal Android secu-
rity architecture, there is no possibility for an application
to achieve root access permissions. The consequence is that
only by exploiting programming errors in system code that
is executed with a root security context, applications can
achieve this privilege escalation.

In this section, we briefly describe four example exploits
that provide temporary escalation to root privilege to the
executing application. All presented exploits in this chap-
ter are created with the Android Native Development Kit,
and their applicability depends on the Android system ver-
sion (known exploits tend to get fixed in updated version).
However, because not all manufacturers provide the latest
firmware updates for all their devices, some of these (and
other) exploits remain open for significant periods. For some
exploits, it is necessary that the Android Debugging Bridge
(ADB) is activated on the device.

3.1 Missing input sanitization
One of the oldest published Android exploits is a classi-

cal case of a service not correctly sanitizing (i.e. validating)
input it receives from potentially untrusted sources. Up to
Android version 1.6, the user-space device management dae-
mon udev, which handles adding or removing device nodes
and firmware loading, fails to verify which process requests
to install new firmware. The exploit itself is triggered in
three steps: First, three files required for the fake firmware
installation are created in the home directory of the appli-
cation or as shell user in the /data/local directory:

loading is an empty file that will be used by firmware in-
stallation tools for reporting status updates.

data is a symlink to /proc/sys/kernel/hotplug.

hotplug contains the full path to the file that should be
executed by the init process. In our case, the hotplug
file would contain the path to the exploit framework
binary (cf. Section 4), which will subsequently be ex-
ecuted in the root security context.

Second, a netlink datagram socket connection is opened
(from any user space application) to the init process (which,
by convention on Linux systems, uses the initial process id,
i.e. pid=1). After this connection has been established, the
application sends the respective keywords to add a firmware
to the system along with the path to the files created in
the first step. This causes the process to start adding a
new firmware without validating the caller’s permissions and
copies the content of the hotplug file into the data file,
changing the system hotplug binary to point to our exploit
framework binary.

Third, we simply trigger a hotplug event, e.g. by turning
WiFi on or off, with the effect of invoking /proc/sys/ker-

nel/hotplug – and therefore our own binary – with system
(root) privileges.

3.2 Overflowing limit of available processes
The goal of this exploit is to overflow the supported num-

ber of processes (defined by RLIMIT_NPROC) created by the
same uid (2000, the SHELL user). If this process limit has
been exceeded, no new processes will be created by the Linux
kernel for this uid and subsequently the debugging daemon
/sbin/adbd normally started in the context of the SHELL

user will be killed by its respective parent. The adbd process
is marked for autostart and will therefore be restarted by
the system. In the default case, the adbd process is started
with root privileges and then changes its uid to 2000 (drop-
ping privileges). However, in an exploited system, this is no
longer possible because the maximum number of processes
for this uid has already been reached; the uid change fails
and adbd, failing to properly deal with this error, remains
running with uid 0. Connecting to the debugging shell of-
fered by adbd will therefore automatically grant root priv-
ileges. According to our tests, this exploit works until the
Android version 2.2.

3.3 Remapping shared memory
This exploit tries to change the global system settings

that effect the system shell. An ashmem (‘Android shared
memory’) area is owned by the init process and holds ref-
erences to the shared memory areas and as well as system
attributes. The virtual file /proc/self/maps lists all these
memory maps of the current process and is parsed by the
exploit to locate the /dev/ashmem/system_properties area
in the shared memory, which it subsequently tries to remap
using the POSIX mprotect function. Until Android version
2.2, the ashmem implementation fails to prevent remapping
shared memory regions by unprivileged processes. Thus, af-
ter remapping the shared memory region, the exploit only
needs to locate the ro.secure attribute and set to 0. Fi-
nally, the adbd process is restarted so that the settings are
applied and all subsequently opened debugging shells are
started with root privileges.

3.4 Restricting access to ashmem
The goal of this exploit is to restrict the ashmem shared

memory where system properties are stored. As mentioned



in the previous exploit, the adbd process relies on the abil-
ity to read the ro.secure property to determine whether
to change its uid or to retain root privileges. If adbd can
not read the properties from shared memory because the
process can not map the ashmem page, then it will – erro-
neously – not drop its privileges under the assumption that
ro.secure is 0. The exploit reads the environment vari-
able ANDROID_PROPERTY_WORKSPACE which contains the size
of the property area and maps the memory again. Then, the
ashmem protection mask will be set to 0 so that no other
process can read the properties, including adbd and there-
fore triggering the erroneous privilege escalation. The side
effect of this exploit is that other processes will also be ex-
cluded from reading this memory area, affecting the whole
system until the next reboot. This exploit has been verified
to work until Android version 2.1.

4. FRAMEWORK
After achieving (temporary) system privileges and there-

fore working around the current Android security measures,
applications are no longer restricted in any way (in the ab-
sence of a kernel MAC implementation or kernel-level virtu-
alization). In many cases, Android devices are being delib-
erately ‘rooted’ (i.e., applications being installed with root
privileges) to get access to system files (such as those under
the /proc and /sys virtual filesystems), e.g. to use these
privileges to optimize the energy consumption of the device
or to overclock the processor. These special applications
must always be able to access the respective files and ser-
vices and it would not seem acceptable if every application
had to exploit the system for every system-level access. Fur-
thermore, some exploits may cause side effects until the sys-
tem is fully rebooted (such as broken DNS resolution). For
all these cases, the device should be permanently rooted, i.e.
the temporary privilege escalation should be transformed to
a permanent privilege escalation, which is one of the main
aims of our framework and described in more detail below.

Our exploit framework (available at http://openuat.org/
android-exploit-framework) can be applied independently
of any specific exploits, allowing experimentation with dif-
ferent exploits before using it to achieve permanent privilege
escalation. As described in section 2.2, there are also devices
where permanent rooting is (currently) not trivial, since the
file system is especially protected by kernel modifications to
prevent changes to the system flash area during run-time.
For these situations, the framework also includes some ad-
ditional functions explained in section 4.2.

4.1 Permanent root privileges
Achieving permanent privilege escalation requires work-

ing around the Android file system access control (cf. sec-
tion 2.2) — the temporary privilege escalation already dis-
abled the sandboxing (cf. section 2.1) and permissions (cf.
section 2.3) security measures. To achieve this goal, there
are several possibilities which are independent of the exploit
used to gain temporary system-level access. The straight-
forward approach is to rely on basic UNIX file system per-
missions and install a new binary with ‘setuid’ permissions
and owned by the root user (e.g. a shell that allows execut-
ing arbitrary other commands or the ‘SuperUser’ Android
application with an adapted ‘su’ binary installed as /sys-

tem/bin/su that asks the user for confirmation when an-
other application tries to use it to gain root permissions).

On filesystems where the /system filesystem is NAND
locked and it can therefore not be modified permanently
while the respective kernel is running, the system would
have to either: a) modify the recovery flash area to em-
bed a new startup script (described in more details below),
trigger a reboot into recovery mode where the device boot
loader executes this recovery instead of the normal boot

kernel and initramfs image, and exploit the fact that the re-
covery system is booted without NAND lock and that the
new startup script can therefore modify the /system filesys-
tem permanently; or b) modify the boot flash area to e.g.
set the ro.secure system property to 0 (in the same way
as modifying recovery) and trigger a normal device reboot
so that the modified initramfs image is loaded by the ker-
nel and, during each subsequent device boot, applies the
changed settings. An automated process that uses either of
these modes of operation has not yet implemented in our
framework but is subject to future work.

Currently, our framework – implemented as a small binary
in native code – executes the following steps when called
with temporary root permissions:

1. It reads the currently mounted file systems from /proc/

mounts and remounts the /system filesystem with read-
write permissions (using direct system calls instead of
the standard user-space tools). If this remounting fails,
the framework aborts, as the subsequent steps can not
be performed due to /system being NAND locked to
the kernel. However, the framework can alternatively
change the access permissions for system databases (cf.
section 4.2), so that at least these files can be read by
arbitrary applications. The disadvantage is that, with-
out additional ‘setuid’ binaries with an user interface,
this access can not be made visible to the user and is
therefore only relevant to the more malicious use cases.

2. The framework itself is copied into the /system/bin

folder. Should this attempt fail (another potential
symptom of the partition being NAND locked), the
alternative action is to set the ‘setuid’ bit on the built-
in shell (/system/bin/sh), which grants root permis-
sions to all applications calling the shell until the next
system reboot. This secondary approach is possible
because some implementations of the NAND lock pro-
tection seem to be faulty: Although creating and/or
writing to files or directories under /system is pre-
vented, modifying file meta information (such as the
‘setuid’ bit) returns an error on the system call but will
still be performed in the YAFFS2 filesystem memory
structures and therefore persist as long as the kernel
is running and the filesystem is not being remounted.

3. If the copy process of the framework has been suc-
cessful, the framework ‘setuid’ bit is also set on the
framework binary, which leads to the fact that the root
privileges are now permanently available.

For NAND locked devices, the following steps would be
necessary to embed the modifications into the recovery or
boot flash areas before triggering a reboot into the respec-
tive (recovery or normal bootup) mode, where the above
changes can be executed without the NAND lock prevent-
ing the remount or copy system calls:

1. It has to be discovered which block device file refers to
the recovery or boot partition of the device. This can

http://openuat.org/android-exploit-framework
http://openuat.org/android-exploit-framework


easily be done by parsing /proc/mtd. For example,
on a (NAND locked) HTC Desire the default recovery
and boot devices are mtd1 and mtd2, respectively.

2. The contents of the respective file under /dev/mtd/ are
copied to the micro SD card and the embedded kernel
and initramfs image are extracted5.

3. The extracted initramfs image is a gzipped cpio archive
that the kernel unpacks during bootup to form the root
filesystem residing in a RAM disk and therefore mak-
ing all changes within the root filesystem temporary
until the next reboot. Within the main boot script
init.rc, the global system attribute ro.secure can
be changed from 1 to 0 (cf. section 3.3).

4. In the last step, all steps from 1–3 are performed back-
wards, so that the manipulated boot image replaces
the original one.

Note that these steps are often followed when custom
ROM images are created for specific devices, e.g. to add ad-
ditional features or the SuperUser application to the main
system image. However, they are typically done on a lap-
top/desktop to the effect of creating a new image for the
recovery, boot, and/or system flash areas. These images
are then bundled in update.zip files that can be executed
by the standard device boot loader to update the respective
flash areas. In contrast, our framework will be extended
to perform these modifications on the device itself without
resorting to additional host systems. To the best of our
knowledge, this has not been presented publicly before.

4.2 Additional features
As mentioned in the previous section, it is not always

possible to permanently achieve system-level permissions.
For these cases, the framework supports making changes
to the /data (instead of the /system) filesystem, which re-
main permanent even on NAND locked devices. Specifically,
database files of various applications will be made available
to all processes, specifically:

accounts.db contains account information used by various
applications.

EmailProvider.db contains all relevant data about the
used mail account and the mails itself.

settings.db contains specific system settings such as screen
timeout.

gmail.db contains the standard Google Mail account that
is used on the system.

The second additional feature of the current framework
version is a keylogger, which records all registered hardware
button events into a custom log file.

5. DISCUSSION AND FUTURE OUTLOOK
In this paper, we have reviewed the Android security ar-

chitecture and its specific security measures with regards
to achieving system-level permissions using privilege escala-
tion techniques during run-time. Four specific exploits that

5The layout of these images is specified in http:
//android.git.kernel.org/?p=platform/system/core.
git;a=blob;f=mkbootimg/bootimg.h.

were previously published by other authors have been im-
plemented within a common structure to temporarily esca-
late the privileges of the calling process to root level. Our
framework then transforms this temporary to a permanent
privilege escalation while keeping the required modifications
to the Android system to a minimum (only installing addi-
tional binaries with their ‘setuid’ bit set) and being eas-
ily reversible. This framework can be used with arbitrary
current and future exploits and is applicable to all current
Android devices. Some current devices feature a so-called
‘NAND lock’ to further protect their main filesystem, which
requires additional steps and at least one device reboot to
work around. We have described a potentially automated
execution of these steps on all currently available devices, al-
though their implementation is subject to future work. Fur-
thermore, we intend to include additional helper functions
and binaries for specific tasks such as parsing and modifying
system database, password stores, or inspecting and modi-
fying network traffic in future versions of our framework.

With the release of our framework, we hope to demon-
strate that the Android security architecture is not – at the
time of this writing – sufficient for preventing malicious ap-
plications from gaining full system-level access. Possibilities
for improving the security of Android devices are manifold;
the most pressing improvements would be the inclusion of
ASLR (address space layout randomization) and NX (no-
execute) patches in the Android kernel, more fine-grained
application capabilities (e.g. to distinguish which network
protocols and resources/URLs applications may use instead
of giving them full network access), and some form of MAC
(mandatory access control) to more thoroughly restrict ap-
plication permissions on the kernel level and therefore to
harden the application sandboxes that currently rely only
on filesystem DAC (discretionary access control).

6. REFERENCES
[1] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev.

Address space randomization for mobile devices. In
Proc. WiSec 2011. ACM Press, 2011.

[2] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on Android.
In Proc. ISC 2010. Springer-Verlag, 2010.

[3] J. C. Foster, V. Osipov, N. Bhalla, and N. Heinen.
Buffer Overflow Attacks: Detect, Exploit, Prevent.
Syngress Publishing, 2005.

[4] T. Harada, T. Horie, and K. Tanaka. Towards a
manageable Linux security. In Proc. Linux Conference,
2005.

[5] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the Linux operating system. In
Proc. FREENIX ’01, 2001.

[6] J. Pincus and B. Baker. Beyond stack smashing: recent
advances in exploiting buffer overruns. IEEE Security
& Privacy, 2(3):20–27, July-August 2004.

[7] E. Ramirez-Silva and M. Dacier. Empirical study of the
impact of metasploit-related attacks in 4 years of attack
traces. In Proc. ASIAN’07. Springer-Verlag, 2007.

[8] C. Schaufler. Smack in embedded computing. In Proc.
Ottawa Linux Symposium, 2008.

[9] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
Android-powered mobile devices using SELinux. IEEE
Security and Privacy, 8:36–44, 2010.

http://android.git.kernel.org/?p=platform/system/core.git;a=blob;f=mkbootimg/bootimg.h
http://android.git.kernel.org/?p=platform/system/core.git;a=blob;f=mkbootimg/bootimg.h
http://android.git.kernel.org/?p=platform/system/core.git;a=blob;f=mkbootimg/bootimg.h

	Introduction
	Android Security Architecture
	Application Sandboxing
	Filesystem Access Control
	Permissions
	Application Signing
	Exploit Prevention

	Example Exploits
	Missing input sanitization
	Overflowing limit of available processes
	Remapping shared memory
	Restricting access to ashmem

	Framework
	Permanent root privileges
	Additional features

	Discussion and Future Outlook
	References

